Topic 15 Homework (Due Tuesday 5/31)

1. $f(x)=-x^{2}+1$
a. Using an interval of width 0.5 , sketch $f(x)=-x^{2}+1$ from $x=-2$ to $x=3$ with lower bound rectangles (to compute minimum areas) and sketch a second copy of $f(x)=-x^{2}+1$ from $x=-2$ to $x=3$ with upper bound rectangles (to compute maximum areas). Note, some rectangles will have a height of zero.
b. Estimate the minimum, the maximum and the average signed areas under $f(x)=-x^{2}+1$ from $x=-2$ to $x=3$ using function values and your sketches from part a).
c. your average estimate is? Is your estimate a little too big or a little too small? Explain.
d. $x=-2$ to $x=3$. Use integral notation.
e.

Use integrals and algebra to find a positive value of a so that the signed area under $f(x)=-x^{2}+1$ from $x=0$ to $x=a$ is zero (no credit for guessing).
2. $\quad f(x)=-x(x+3)(x-2)$
a. Completely multiply out $\quad f(x)=-x(x+3)(x-2)$.
b. \quad Compute the antiderivative of $f(x)$.
c. Draw a careful sketch of $f(x)$ and then, for each part, answer the following: Should the signed area be positive or negative?
(i)
(ii)
(iii)
(iv)

$$
\begin{aligned}
& \text { From } x=-3 \text { to } x=0 ? \\
& \text { From } x=0 \text { to } x=2 ? \\
& \text { From } x=2 \text { to } x=4 ? \\
& \text { From } x=-3 \text { to } x=4 ?
\end{aligned}
$$

d. Using calculus, compute each of the following:
(i)

$$
\begin{align*}
& \int_{-3}^{0} f(x) d x \tag{ii}\\
& \int_{2}^{4} f(x) d x \tag{iv}
\end{align*}
$$

$$
\begin{aligned}
& \int_{0}^{2} f(x) d x \\
& \int_{-3}^{4} f(x) d x
\end{aligned}
$$

