MTH 410 - Homework 3-Due: 6/8/2016

You must complete 8 of the following problems to get any credit. If you do more than 8 you will get extra credit. The more that you do the more credit you get.

1. (Counts as two problems) Let $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ be topological spaces. Let $f: X \rightarrow Y$ be a continuous function. Define a relation \sim on X by

- For any $a, b \in X, a \sim b$ if and only if $f(a)=f(b)$.
(a) Prove that \sim is an equivalence relation on X.
(b) Define a function

$$
F: X / \sim \longrightarrow Y
$$

by $F([x])=f(x)$. Prove the following statements about F.
i. (Well-defined) For any $x \in X$ and any $y \in[x]$, we have that $F([x])=F([y x)$.
ii. (Continuous) The map F is a continuous map.
iii. (Identification) For any $x \in X$, we have that $\left(F \circ q_{\sim}\right)(x)=f(x)$.
iv. (Unique) If

$$
G: X / \sim \longrightarrow Z
$$

is any function that satisfies $\left(G \circ q_{\sim}\right)(x)=f(x)$ for all $x \in X$, then $G([x])=F([x])$ for all $[x] \in X / \sim$.
2. For the function exp : $\mathbb{R} \rightarrow S^{1}$ defined by $\exp (r)=(\cos (r), \sin (r))$. In our last homework we proved that this is a continuous function. Referring to the previous problem, describe in this case, the space X / \sim, the map $q_{\sim}: X \rightarrow X / \sim$, and the map $F: X / \sim S^{1}$.
3. Let (X, d) be a metric space. Define

$$
D:(X \times X) \times(X \times X) \rightarrow \mathbb{R}
$$

by

$$
D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{d\left(x_{1}, x_{2}\right)^{2}+d\left(y_{1}, y_{2}\right)^{2}} .
$$

You may assume and use without proof that D defines a metric on $X \times X$. Prove that the metric

$$
d: X \times X \rightarrow \mathbb{R}
$$

on X is continuous.
4. For topological spaces $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ a continuous function

$$
f: X \longrightarrow Y
$$

is called an open map if for any subset $U \subset X$, we have that: if $U \in \tau_{X}$ then $f(U)=\{f(x) \mid x \in U\} \in$ τ_{Y}. Consider the projection map $\pi_{1}: X \times Y \rightarrow X$ defined by $\pi_{1}(x, y)=x$. Prove that π_{1} is an open map.
5. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at precisely no point in \mathbb{R}. Prove that the function that you provide has the desired properties.
6. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at precisely one point in \mathbb{R}. Prove that the function that you provide has the desired properties.
7. Let X and Y be sets and $f: X \rightarrow Y$ be a function. Let $U, V \subset Y$. Prove:
(a) $f^{-1}(U \cup V)=f^{-1}(U) \cup f^{-1}(V)$.
(b) $f^{-1}(U \cap V)=f^{-1}(U) \cap f^{-1}(V)$.
(c) $f^{-1}(U-V)=f^{-1}(U)-f^{-1}(V)$.
8. Let X and Y be sets and $f: X \rightarrow Y$ be a function. Let $U, V \subset X$. For each of the following provide examples of X, Y, U, V and f that show that they are not true
(a) $f(U \cap V)=f(U) \cap f(V)$.
(b) $f(U-V)=f(U)-f(V)$.
9. Provide an example of topological spaces X and Y and continuous functions $f: X \rightarrow Y, g: Y \rightarrow X$, such that for all $x \in X$ we have that $g(f(x))=x$, but there is a $y \in Y$ such that $f(g(y)) \neq y$.
10. Provide an example of topological spaces X and Y and continuous functions $f: X \rightarrow Y, g: Y \rightarrow X$, such that for all $y \in Y$ we have that $f(g(y))=y$, but there is an $x \in X$ such that $g(f(x)) \neq x$.
11. Let $+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be defied by $+(x, y)=x+y$ for all $x, y \in \mathbb{R}$. Prove that + is a continuous map.
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Fix $x \in \mathbb{R}$. Define a sequence $x_{0}=x, x_{1}=f(x), x_{2}=f(f(x))=f^{2}(x)$, and so on, so that $x_{n}=f^{n}(x)$, for each $n \geq 0$. Assume that there is a $y \in \mathbb{R}$ such that the sequence x_{n} converges to y. Prove that $f(y)=y$.
13. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. You may assume without proving the fact that any sequence in $[0,1]$ has a convergent subsequence. Prove that there is a point $y \in \mathbb{R}$ such that $f(y)=y$.
14. Prove that any sequence in $[0,1]$ has a convergent subsequence.
15. Let p be a polynomial in one variable with real coefficients. Fix $\epsilon>0$, assume that $p(x)=0$ for all $x \in(-\epsilon, \epsilon)$. Use the induction and the definition of the derivative to prove that $p(x)=0$ for all $x \in \mathbb{R}$.

