You must complete 8 of the following problems to get any credit. If you do more than 8 you will get extra credit. The more that you do the more credit you get.

- 1. (Counts as two problems) Let (X, τ_X) and (Y, τ_Y) be topological spaces. Let $f : X \to Y$ be a continuous function. Define a relation \sim on X by
 - For any $a, b \in X$, $a \sim b$ if and only if f(a) = f(b).
 - (a) Prove that \sim is an equivalence relation on X.
 - (b) Define a function

$$F: X/ \sim \longrightarrow Y,$$

by F([x]) = f(x). Prove the following statements about F.

- i. (Well-defined) For any $x \in X$ and any $y \in [x]$, we have that F([x]) = F([yx).
- ii. (Continuous) The map F is a continuous map.
- iii. (Identification) For any $x \in X$, we have that $(F \circ q_{\sim})(x) = f(x)$.
- iv. (Unique) If

 $G: X/ \sim \longrightarrow Z$

is any function that satisfies $(G \circ q_{\sim})(x) = f(x)$ for all $x \in X$, then G([x]) = F([x]) for all $[x] \in X/\sim$.

- 2. For the function $\exp : \mathbb{R} \to S^1$ defined by $\exp(r) = (\cos(r), \sin(r))$. In our last homework we proved that this is a continuous function. Referring to the previous problem, describe in this case, the space X/\sim , the map $q_{\sim} : X \to X/\sim$, and the map $F : X/\sim \to S^1$.
- 3. Let (X, d) be a metric space. Define

$$D: (X \times X) \times (X \times X) \to \mathbb{R}$$

by

$$D((x_1, y_1), (x_2, y_2)) = \sqrt{d(x_1, x_2)^2 + d(y_1, y_2)^2}$$

You may assume and use without proof that D defines a metric on $X \times X$. Prove that the metric

$$d: X \times X \to \mathbb{R}$$

on X is continuous.

4. For topological spaces (X, τ_X) and (Y, τ_Y) a continuous function

$$f: X \longrightarrow Y$$

is called an open map if for any subset $U \subset X$, we have that: if $U \in \tau_X$ then $f(U) = \{f(x) | x \in U\} \in \tau_Y$. Consider the projection map $\pi_1 : X \times Y \to X$ defined by $\pi_1(x, y) = x$. Prove that π_1 is an open map.

- 5. Find a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at precisely no point in \mathbb{R} . Prove that the function that you provide has the desired properties.
- 6. Find a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at precisely one point in \mathbb{R} . Prove that the function that you provide has the desired properties.
- 7. Let X and Y be sets and $f: X \to Y$ be a function. Let $U, V \subset Y$. Prove:

(a)
$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V).$$

- (b) $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$.
- (c) $f^{-1}(U V) = f^{-1}(U) f^{-1}(V)$.
- 8. Let X and Y be sets and $f: X \to Y$ be a function. Let $U, V \subset X$. For each of the following provide examples of X, Y, U, V and f that show that they are not true
 - (a) $f(U \cap V) = f(U) \cap f(V)$.
 - (b) f(U V) = f(U) f(V).
- 9. Provide an example of topological spaces X and Y and continuous functions $f: X \to Y, g: Y \to X$, such that for all $x \in X$ we have that g(f(x)) = x, but there is a $y \in Y$ such that $f(g(y)) \neq y$.
- 10. Provide an example of topological spaces X and Y and continuous functions $f: X \to Y, g: Y \to X$, such that for all $y \in Y$ we have that f(g(y)) = y, but there is an $x \in X$ such that $g(f(x)) \neq x$.
- 11. Let $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by +(x, y) = x + y for all $x, y \in \mathbb{R}$. Prove that + is a continuous map.
- 12. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Fix $x \in \mathbb{R}$. Define a sequence $x_0 = x$, $x_1 = f(x)$, $x_2 = f(f(x)) = f^2(x)$, and so on, so that $x_n = f^n(x)$, for each $n \ge 0$. Assume that there is a $y \in \mathbb{R}$ such that the sequence x_n converges to y. Prove that f(y) = y.
- 13. Let $f : [0,1] \to [0,1]$ be a continuous function. You may assume without proving the fact that any sequence in [0,1] has a convergent subsequence. Prove that there is a point $y \in \mathbb{R}$ such that f(y) = y.
- 14. Prove that any sequence in [0, 1] has a convergent subsequence.
- 15. Let p be a polynomial in one variable with real coefficients. Fix $\epsilon > 0$, assume that p(x) = 0 for all $x \in (-\epsilon, \epsilon)$. Use the induction and the definition of the derivative to prove that p(x) = 0 for all $x \in \mathbb{R}$.