
MTH 410 - Homework 1 - Due: 4/22/2016

1. Let X be the collection of all continuous function from the closed unit interval [0, 1] to the real
numbers R. Define the function

d(f, g) = sup {|f(x)− g(x)| for x ∈ [0, 1]} .

(a) Prove that d is a metric on X.

(b) Is d a metric if the word continuous is is removed from the definition of X? Justify you answer.

(c) Find the exact value of d(
√
x, x2). Show your work.

Proof: We verify the four conditions required to be a metric:

• d(f, g) ≥ 0 for every f, g ∈ X,

Let f, g ∈ X, since d(f, g) is defined to be a supremum we know that d(f, g) ≥ |f(x) − g(x)|
for all x ∈ [0, 1]. The absolute value function takes only non-negative values, so we know that
|f(x)−g(x)| ≥ 0 for all x ∈ [0, 1]. Thus for any x ∈ [0, 1] we have that d(f, g) ≥ |f(x)−g(x)| ≥ 0
as desired.

• For any f, g ∈ X, d(f, g) = 0 if and only if f = g,

Let f, g ∈ X, assume that f = g. This means that f(x) = g(x) for all x ∈ [0, 1], thus |f(x) −
g(x)| = 0 for all x ∈ [0, 1]. Therefore, we have that d(f, g) = sup{0} = 0. Now assume
that d(f, g) = 0. This means that 0 = d(f, g) ≥ |f(x) − g(x)| ≥ 0 for all x ∈ [0, 1]. Thus
|f(x)−g(x)| = 0 for all x ∈ [0, 1]. This implies that f(x) = g(x) for all x ∈ [0, 1], and thus f = g.

• d(f, g) = d(g, f), for every f, g ∈ X,

Let f, g ∈ X. Since |f(x) − g(x)| = |(−1)(g(x) − f(x))| = |g(x) − f(x)| we have the equality of
sets {|f(x)− g(x)| : x ∈ [0, 1]} = {|g(x)− f(x)| : x ∈ [0, 1]}. Thus the supremum of each of these
two sets is equal. This means that d(f, g) = d(g, f).

• d(f, h) ≤ d(f, g) + d(g, h), for all f, g, h inX.

Let f, g, h ∈ X. For any x ∈ [0, 1] the definition of supremum and the triangle inequality for
absolute value give us the following:

|f(x)− h(x)| = |f(x)− g(x) + g(x)− h(x)| ≤ |f(x)− g(x)|+ |g(x)− h(x)| ≤ d(f, g) + d(g, h).

This implies that d(f, g) + d(g, h) is an upper bound for the set {|f(x)− h(x)| : x ∈ [0, 1]}. Thus
by the definition of supremum

d(f, h) ≤ d(f, g) + d(g, h).

Therefore d is a metric on X•
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2. For x = (x1, x2), and y = (y1, y2) in R2 define

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

(a) Prove that d is a metric on R2.

Proof: We verify the four conditions required to be a metric:

• d(x, y) ≥ 0 for every x, y ∈ R2,
The output values of the function f(x) =

√
x are always non-negative. Therefore this property

is satisfied.

• For any x, y ∈ R, d(x, y) = 0 if and only if x = y,
Let x = (x1, x2), y = (y1, y2) for x1, x2, y1, y2 ∈ R. Note that f(z) =

√
z = 0 if and only if

z = 0. Thus d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 = 0 if and only if (x1 − y1)2 + (x2 − y2)2 = 0.
since each summand is non-negative, this equality is true if and only if both (x1 − y1)2 = 0
and (x2 − y2)2 = 0. The first of these is ture if and only if x1 = y1, and the second is true if
and only if x2 = y2. These last statements are true if and only if x = y. This is the desired
result.

• d(x, y) = d(y, x), for every x, y ∈ R,
Let x = (x1, x2), y = (y1, y2) for x1, x2, y1, y2 ∈ R. Since (x1−y1)2 = (y1−x1)2 and (x2−y2)2 =
(y2 − x2)2 we have that

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 =
√

(y1 − x1)2 + (y2 − x2)2 = d(y, x).

• d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ R.
Let x = (x1, x2), y = (y1, y2), z = (z1, z2) for x1, x2, y1, y2, z1, z2 ∈ R. First define a = x1 −
y1, b = y1−z1, c = x2−y2, d = y2−z2. Now note that d(x, y)2 = a2 +c2 and d(y, z)2 = b2 +d2,
and

d(x, z)2 = (x1−z1)2+(x2−z2)2 = (x1−y1+y1−z1)2+(x2−y2+y2−z2)2 = (a+b)2+(c+d)2.

Expanding this last equation and simplifying using the two equations before it gives

d(x, z)2 = a2 + 2ab+ b2 + c2 + 2cd+ d2 = d(x, y)2 + d(y, z)2 + 2(ac+ bd).

The second thing to note is that

(d(x, y) + d(y, z))2 = d(x, y)2 + 2d(x, y)d(y, z) + d(y, z)2.

Lemma:
ab+ cd ≤ d(x, y)d(y, z).

Proof of Lemma First note that

0 ≤ (ac− bd)2 = a2c2 − 2adbc+ b2d2,

and therefore we have that 2adbc ≤ a2c2 + b2d2. Adding a2b2 + c2d2 to both sides gives

a2b2 + 2adbc+ c2d2 ≤ a2b2 + a2c2 + b2d2 + c2d2

Now note that the left side is (ab+ cd)2, and the right side is

a2b2 + a2c2 + b2d2 + c2d2 = (a2 + c2)(b2 + d2) = d(x, y)2d(y, z)2
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Thus we have proven that
(ab+ cd)2 ≤ (d(x, y)d(y, z))2.

Again since the function z 7→ z2 is an order preserving function on the positive real numbers,
this proves the desired inequality•
With this inequality, we have proven that

d(x, z)2 ≤ (d(x, y) + d(y, z))2.

Since the function z 7→ z2 is an increasing function on the positive real numbers, and therefore
order preserving there, we have that

d(x, z) ≤ d(x, y) + d(y, z),

and therefore that d satisfies the triangle inequality.
Therefore d is a metric on R•

(b) Define a sequence in R2 by xn =
(
1
n

cos(n), 1
n

sin(n)
)
, for n ∈ N. Decide whether or not this

sequence converges. Either prove that it does not converge, or prove that it does and find its
limit point.

Claim: This sequence converges to 0 = (0, 0).

Proof: Let ε > 0, and choose N such that 1/N ≤ ε. Then for any n ≥ N , we have that
1/n ≤ 1/N < ε. Thus we have

d(xn, 0) =

√
(
1

n
cos(n)− 0)2 + (

1

n
sin(n)− 0)2 =

√
1

n2
(cos2(n) + sin2(n)) =

√
1

n2
=

1

n
< ε.

This proves that this sequence converges to 0•

MTH 410 Homework 1



3. Let (X, dX) and (Y, dY ) be metric spaces, and f : X → Y be a continuous function.

(a) Prove that if the sequence {xn}∞n=1 in X converges to x ∈ X, then the sequence {f(xn)}∞n=1 in Y
converges to f(x) ∈ Y .

Proof: Let ε > 0, then since f is continuous there exists a δ > 0 such that for all z ∈ X
if d(z, x) < δ, then d(f(z), f(x)) < ε. Since the sequence {xn}∞n=1 converges to x, there exists,
for this choice of δ an N ≥ 1 such that for all n ≥ N we have that d(xn, x) < δ. But by
the previous sentence, this implies that d(f(xn), f(x)) <≤ ε. This proves that the sequence
{f(xn)}∞n=1 converges to f(x)•

(b) Provide an example of a continuous function f : R→ R, and a sequence {xn}∞n=1 in R such that
the sequence {f(xn)}∞n=1 converges, but the sequence {xn}∞n=1 does not converge.

Example: For each n ≥ 1 define xn = (−1)n. The sequence does not converge since for any
N ≥ 0 there is an n ≥ N such that 1 = d(xn, xn+1) ≤ d(xn, x) + d(x, xn+1), for every x ∈ R.
Let f(x) = |x|, then for every open interval (a, b) ⊂ R, we have that f−1(a, b) = (−b,−a)∪ (a, b)
is the union of two open intervals, and thus is open. Since open intervals form a basis for the
topology on R we have that f is continuous. Note that f(xn) = 1 for all n, so that the sequence
{f(xn)}∞n=1 is a constant sequence. Thus for any ε > 0 let N = 1, then for any n ≥ N we have
that d(f(x1), 1) = 0 < ε. Thus this sequence converges•
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4. Let X and Y be sets a function f : X → Y is called a bijection if there exists a function g : Y → X
such that both of the following equalities hold

g(f(x)) = x for all x ∈ X,

and
f(g(y)) = y for all y ∈ Y.

Prove that such a function g is unique. That is to say that if there are function g1 : Y → X and
g2 : Y → X each of which satisfys the above equations, then g1(y) = g2(y), for all y ∈ Y .

Proof: Assume that we have functions g1, g2 : Y → X such that g1(f(x)) = x = g2(f(x)) for all x ∈ X,
and f(g2(y)) = y = f(g2(y)) for all y ∈ Y . Let y ∈ Y , define z1 = g1(y), and z2 = g2(y). By using these
identities we have the following

g1(y) = g1(f(g2(y)) = g1(f(z2)) = z2 = g2(y).

Thus g1 = g2•
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