1. Let X be the collection of all continuous function from the closed unit interval [0,1] to the real numbers \mathbb{R} . Define the function

$$d(f,g) = \sup \{ |f(x) - g(x)| \text{ for } x \in [0,1] \}.$$

- (a) Prove that d is a metric on X.
- (b) Is d a metric if the word continuous is is removed from the definition of X? Justify you answer.
- (c) Find the exact value of $d(\sqrt{x}, x^2)$. Show your work.

Proof: We verify the four conditions required to be a metric:

• $d(f,g) \ge 0$ for every $f,g \in X$,

Let $f, g \in X$, since d(f, g) is defined to be a supremum we know that $d(f, g) \ge |f(x) - g(x)|$ for all $x \in [0, 1]$. The absolute value function takes only non-negative values, so we know that $|f(x) - g(x)| \ge 0$ for all $x \in [0, 1]$. Thus for any $x \in [0, 1]$ we have that $d(f, g) \ge |f(x) - g(x)| \ge 0$ as desired.

- For any $f, g \in X$, d(f, g) = 0 if and only if f = g, Let $f, g \in X$, assume that f = g. This means that f(x) = g(x) for all $x \in [0, 1]$, thus |f(x) - g(x)| = 0 for all $x \in [0, 1]$. Therefore, we have that $d(f, g) = \sup\{0\} = 0$. Now assume that d(f, g) = 0. This means that $0 = d(f, g) \ge |f(x) - g(x)| \ge 0$ for all $x \in [0, 1]$. Thus |f(x) - g(x)| = 0 for all $x \in [0, 1]$. This implies that f(x) = g(x) for all $x \in [0, 1]$, and thus f = g.
- d(f,g) = d(g,f), for every $f, g \in X$, Let $f, g \in X$. Since |f(x) - g(x)| = |(-1)(g(x) - f(x))| = |g(x) - f(x)| we have the equality of sets $\{|f(x) - g(x)| : x \in [0,1]\} = \{|g(x) - f(x)| : x \in [0,1]\}$. Thus the supremum of each of these two sets is equal. This means that d(f,g) = d(g,f).
- $d(f,h) \leq d(f,g) + d(g,h)$, for all f, g, h in X. Let $f, g, h \in X$. For any $x \in [0,1]$ the definition of supremum and the triangle inequality for absolute value give us the following:

$$|f(x) - h(x)| = |f(x) - g(x) + g(x) - h(x)| \le |f(x) - g(x)| + |g(x) - h(x)| \le d(f,g) + d(g,h).$$

This implies that d(f,g) + d(g,h) is an upper bound for the set $\{|f(x) - h(x)| : x \in [0,1]\}$. Thus by the definition of supremum

$$d(f,h) \le d(f,g) + d(g,h).$$

Therefore d is a metric on X_{\bullet}

2. For $x = (x_1, x_2)$, and $y = (y_1, y_2)$ in \mathbb{R}^2 define

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

(a) Prove that d is a metric on \mathbb{R}^2 .

Proof: We verify the four conditions required to be a metric:

- $d(x, y) \ge 0$ for every $x, y \in \mathbb{R}^2$, The output values of the function $f(x) = \sqrt{x}$ are always non-negative. Therefore this property is satisfied.
- For any $x, y \in \mathbb{R}$, d(x, y) = 0 if and only if x = y, Let $x = (x_1, x_2), y = (y_1, y_2)$ for $x_1, x_2, y_1, y_2 \in \mathbb{R}$. Note that $f(z) = \sqrt{z} = 0$ if and only if z = 0. Thus $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = 0$ if and only if $(x_1 - y_1)^2 + (x_2 - y_2)^2 = 0$. since each summand is non-negative, this equality is true if and only if both $(x_1 - y_1)^2 = 0$ and $(x_2 - y_2)^2 = 0$. The first of these is ture if and only if $x_1 = y_1$, and the second is true if and only if $x_2 = y_2$. These last statements are true if and only if x = y. This is the desired result.
- d(x,y) = d(y,x), for every $x, y \in \mathbb{R}$, Let $x = (x_1, x_2), y = (y_1, y_2)$ for $x_1, x_2, y_1, y_2 \in \mathbb{R}$. Since $(x_1 - y_1)^2 = (y_1 - x_1)^2$ and $(x_2 - y_2)^2 = (y_2 - x_2)^2$ we have that

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2} = d(y,x)$$

• $d(x,z) \leq d(x,y) + d(y,z)$, for all $x, y, z \in \mathbb{R}$. Let $x = (x_1, x_2), y = (y_1, y_2), z = (z_1, z_2)$ for $x_1, x_2, y_1, y_2, z_1, z_2 \in \mathbb{R}$. First define $a = x_1 - y_1, b = y_1 - z_1, c = x_2 - y_2, d = y_2 - z_2$. Now note that $d(x, y)^2 = a^2 + c^2$ and $d(y, z)^2 = b^2 + d^2$, and

$$d(x,z)^{2} = (x_{1}-z_{1})^{2} + (x_{2}-z_{2})^{2} = (x_{1}-y_{1}+y_{1}-z_{1})^{2} + (x_{2}-y_{2}+y_{2}-z_{2})^{2} = (a+b)^{2} + (c+d)^{2}.$$

Expanding this last equation and simplifying using the two equations before it gives

$$d(x,z)^{2} = a^{2} + 2ab + b^{2} + c^{2} + 2cd + d^{2} = d(x,y)^{2} + d(y,z)^{2} + 2(ac + bd).$$

The second thing to note is that

$$(d(x,y) + d(y,z))^{2} = d(x,y)^{2} + 2d(x,y)d(y,z) + d(y,z)^{2}.$$

Lemma:

$$ab + cd \le d(x, y)d(y, z).$$

Proof of Lemma First note that

 $0 \le (ac - bd)^2 = a^2c^2 - 2adbc + b^2d^2,$

and therefore we have that $2adbc \leq a^2c^2 + b^2d^2$. Adding $a^2b^2 + c^2d^2$ to both sides gives

$$a^2b^2 + 2adbc + c^2d^2 \leq a^2b^2 + a^2c^2 + b^2d^2 + c^2d^2$$

Now note that the left side is $(ab + cd)^2$, and the right side is

$$a^{2}b^{2} + a^{2}c^{2} + b^{2}d^{2} + c^{2}d^{2} = (a^{2} + c^{2})(b^{2} + d^{2}) = d(x, y)^{2}d(y, z)^{2}$$

Homework 1

Thus we have proven that

$$(ab + cd)^2 \le (d(x, y)d(y, z))^2.$$

Again since the function $z \mapsto z^2$ is an order preserving function on the positive real numbers, this proves the desired inequality.

With this inequality, we have proven that

$$d(x,z)^2 \le (d(x,y) + d(y,z))^2.$$

Since the function $z \mapsto z^2$ is an increasing function on the positive real numbers, and therefore order preserving there, we have that

$$d(x,z) \le d(x,y) + d(y,z),$$

and therefore that d satisfies the triangle inequality. Therefore d is a metric on \mathbb{R}_{\bullet}

(b) Define a sequence in \mathbb{R}^2 by $x_n = \left(\frac{1}{n}\cos(n), \frac{1}{n}\sin(n)\right)$, for $n \in \mathbb{N}$. Decide whether or not this sequence converges. Either prove that it does not converge, or prove that it does and find its limit point.

Claim: This sequence converges to 0 = (0, 0).

Proof: Let $\epsilon > 0$, and choose N such that $1/N \leq \epsilon$. Then for any $n \geq N$, we have that $1/n \leq 1/N < \epsilon$. Thus we have

$$d(x_n, 0) = \sqrt{\left(\frac{1}{n}\cos(n) - 0\right)^2 + \left(\frac{1}{n}\sin(n) - 0\right)^2} = \sqrt{\frac{1}{n^2}(\cos^2(n) + \sin^2(n))} = \sqrt{\frac{1}{n^2}} = \frac{1}{n} < \epsilon.$$

This proves that this sequence converges to 0_{\bullet}

- 3. Let (X, d_X) and (Y, d_Y) be metric spaces, and $f: X \to Y$ be a continuous function.
 - (a) Prove that if the sequence $\{x_n\}_{n=1}^{\infty}$ in X converges to $x \in X$, then the sequence $\{f(x_n)\}_{n=1}^{\infty}$ in Y converges to $f(x) \in Y$.

Proof: Let $\epsilon > 0$, then since f is continuous there exists a $\delta > 0$ such that for all $z \in X$ if $d(z, x) < \delta$, then $d(f(z), f(x)) < \epsilon$. Since the sequence $\{x_n\}_{n=1}^{\infty}$ converges to x, there exists, for this choice of δ an $N \ge 1$ such that for all $n \ge N$ we have that $d(x_n, x) < \delta$. But by the previous sentence, this implies that $d(f(x_n), f(x)) < \epsilon$. This proves that the sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges to $f(x)_{\bullet}$

(b) Provide an example of a continuous function $f : \mathbb{R} \to \mathbb{R}$, and a sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} such that the sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges, but the sequence $\{x_n\}_{n=1}^{\infty}$ does not converge. **Example:** For each $n \ge 1$ define $x_n = (-1)^n$. The sequence does not converge since for any $N \ge 0$ there is an $n \ge N$ such that $1 = d(x_n, x_{n+1}) \le d(x_n, x) + d(x, x_{n+1})$, for every $x \in \mathbb{R}$. Let f(x) = |x|, then for every open interval $(a, b) \subset \mathbb{R}$, we have that $f^{-1}(a, b) = (-b, -a) \cup (a, b)$ is the union of two open intervals, and thus is open. Since open intervals form a basis for the topology on \mathbb{R} we have that f is continuous. Note that $f(x_n) = 1$ for all n, so that the sequence $\{f(x_n)\}_{n=1}^{\infty}$ is a constant sequence. Thus for any $\epsilon > 0$ let N = 1, then for any $n \ge N$ we have that $d(f(x_1), 1) = 0 < \epsilon$. Thus this sequence converges. 4. Let X and Y be sets a function $f: X \to Y$ is called a bijection if there exists a function $g: Y \to X$ such that both of the following equalities hold

$$g(f(x)) = x$$
 for all $x \in X$,

and

$$f(q(y)) = y$$
 for all $y \in Y$.

Prove that such a function g is unique. That is to say that if there are function $g_1 : Y \to X$ and $g_2 : Y \to X$ each of which satisfys the above equations, then $g_1(y) = g_2(y)$, for all $y \in Y$.

Proof: Assume that we have functions $g_1, g_2 : Y \to X$ such that $g_1(f(x)) = x = g_2(f(x))$ for all $x \in X$, and $f(g_2(y)) = y = f(g_2(y))$ for all $y \in Y$. Let $y \in Y$, define $z_1 = g_1(y)$, and $z_2 = g_2(y)$. By using these identities we have the following

$$g_1(y) = g_1(f(g_2(y))) = g_1(f(z_2)) = z_2 = g_2(y)$$

Thus $g_1 = g_{2\bullet}$