## MTH 410 - Homework 1 - Due: 4/22/2016

1. Let $X$ be the collection of all continuous function from the closed unit interval $[0,1]$ to the real numbers $\mathbb{R}$. Define the function

$$
d(f, g)=\sup \{|f(x)-g(x)| \text { for } x \in[0,1]\}
$$

(a) Prove that $d$ is a metric on $X$.
(b) Is $d$ a metric if the word continuous is is removed from the definition of $X$ ? Justify you answer.
(c) Find the exact value of $d\left(\sqrt{x}, x^{2}\right)$. Show your work.

Proof: We verify the four conditions required to be a metric:

- $d(f, g) \geq 0$ for every $f, g \in X$,

Let $f, g \in X$, since $d(f, g)$ is defined to be a supremum we know that $d(f, g) \geq|f(x)-g(x)|$ for all $x \in[0,1]$. The absolute value function takes only non-negative values, so we know that $|f(x)-g(x)| \geq 0$ for all $x \in[0,1]$. Thus for any $x \in[0,1]$ we have that $d(f, g) \geq|f(x)-g(x)| \geq 0$ as desired.

- For any $f, g \in X, d(f, g)=0$ if and only if $f=g$,

Let $f, g \in X$, assume that $f=g$. This means that $f(x)=g(x)$ for all $x \in[0,1]$, thus $\mid f(x)-$ $g(x) \mid=0$ for all $x \in[0,1]$. Therefore, we have that $d(f, g)=\sup \{0\}=0$. Now assume that $d(f, g)=0$. This means that $0=d(f, g) \geq|f(x)-g(x)| \geq 0$ for all $x \in[0,1]$. Thus $|f(x)-g(x)|=0$ for all $x \in[0,1]$. This implies that $f(x)=g(x)$ for all $x \in[0,1]$, and thus $f=g$.

- $d(f, g)=d(g, f)$, for every $f, g \in X$,

Let $f, g \in X$. Since $|f(x)-g(x)|=|(-1)(g(x)-f(x))|=|g(x)-f(x)|$ we have the equality of sets $\{|f(x)-g(x)|: x \in[0,1]\}=\{|g(x)-f(x)|: x \in[0,1]\}$. Thus the supremum of each of these two sets is equal. This means that $d(f, g)=d(g, f)$.

- $d(f, h) \leq d(f, g)+d(g, h)$, for all $f, g, h$ in $X$.

Let $f, g, h \in X$. For any $x \in[0,1]$ the definition of supremum and the triangle inequality for absolute value give us the following:

$$
|f(x)-h(x)|=|f(x)-g(x)+g(x)-h(x)| \leq|f(x)-g(x)|+|g(x)-h(x)| \leq d(f, g)+d(g, h)
$$

This implies that $d(f, g)+d(g, h)$ is an upper bound for the set $\{|f(x)-h(x)|: x \in[0,1]\}$. Thus by the definition of supremum

$$
d(f, h) \leq d(f, g)+d(g, h)
$$

Therefore $d$ is a metric on $X$.
2. For $x=\left(x_{1}, x_{2}\right)$, and $y=\left(y_{1}, y_{2}\right)$ in $\mathbb{R}^{2}$ define

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}
$$

(a) Prove that $d$ is a metric on $\mathbb{R}^{2}$.

Proof: We verify the four conditions required to be a metric:

- $d(x, y) \geq 0$ for every $x, y \in \mathbb{R}^{2}$,

The output values of the function $f(x)=\sqrt{x}$ are always non-negative. Therefore this property is satisfied.

- For any $x, y \in \mathbb{R}, d(x, y)=0$ if and only if $x=y$,

Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ for $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$. Note that $f(z)=\sqrt{z}=0$ if and only if $z=0$. Thus $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}=0$ if and only if $\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}=0$. since each summand is non-negative, this equality is true if and only if both $\left(x_{1}-y_{1}\right)^{2}=0$ and $\left(x_{2}-y_{2}\right)^{2}=0$. The first of these is ture if and only if $x_{1}=y_{1}$, and the second is true if and only if $x_{2}=y_{2}$. These last statements are true if and only if $x=y$. This is the desired result.

- $d(x, y)=d(y, x)$, for every $x, y \in \mathbb{R}$,

Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ for $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$. Since $\left(x_{1}-y_{1}\right)^{2}=\left(y_{1}-x_{1}\right)^{2}$ and $\left(x_{2}-y_{2}\right)^{2}=$ $\left(y_{2}-x_{2}\right)^{2}$ we have that

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}}=d(y, x)
$$

- $d(x, z) \leq d(x, y)+d(y, z)$, for all $x, y, z \in \mathbb{R}$.

Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right), z=\left(z_{1}, z_{2}\right)$ for $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2} \in \mathbb{R}$. First define $a=x_{1}-$ $y_{1}, b=y_{1}-z_{1}, c=x_{2}-y_{2}, d=y_{2}-z_{2}$. Now note that $d(x, y)^{2}=a^{2}+c^{2}$ and $d(y, z)^{2}=b^{2}+d^{2}$, and

$$
d(x, z)^{2}=\left(x_{1}-z_{1}\right)^{2}+\left(x_{2}-z_{2}\right)^{2}=\left(x_{1}-y_{1}+y_{1}-z_{1}\right)^{2}+\left(x_{2}-y_{2}+y_{2}-z_{2}\right)^{2}=(a+b)^{2}+(c+d)^{2} .
$$

Expanding this last equation and simplifying using the two equations before it gives

$$
d(x, z)^{2}=a^{2}+2 a b+b^{2}+c^{2}+2 c d+d^{2}=d(x, y)^{2}+d(y, z)^{2}+2(a c+b d) .
$$

The second thing to note is that

$$
(d(x, y)+d(y, z))^{2}=d(x, y)^{2}+2 d(x, y) d(y, z)+d(y, z)^{2} .
$$

## Lemma:

$$
a b+c d \leq d(x, y) d(y, z)
$$

Proof of Lemma First note that

$$
0 \leq(a c-b d)^{2}=a^{2} c^{2}-2 a d b c+b^{2} d^{2}
$$

and therefore we have that $2 a d b c \leq a^{2} c^{2}+b^{2} d^{2}$. Adding $a^{2} b^{2}+c^{2} d^{2}$ to both sides gives

$$
a^{2} b^{2}+2 a d b c+c^{2} d^{2} \leq a^{2} b^{2}+a^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}
$$

Now note that the left side is $(a b+c d)^{2}$, and the right side is

$$
a^{2} b^{2}+a^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}=\left(a^{2}+c^{2}\right)\left(b^{2}+d^{2}\right)=d(x, y)^{2} d(y, z)^{2}
$$

Thus we have proven that

$$
(a b+c d)^{2} \leq(d(x, y) d(y, z))^{2}
$$

Again since the function $z \mapsto z^{2}$ is an order preserving function on the positive real numbers, this proves the desired inequality.
With this inequality, we have proven that

$$
d(x, z)^{2} \leq(d(x, y)+d(y, z))^{2}
$$

Since the function $z \mapsto z^{2}$ is an increasing function on the positive real numbers, and therefore order preserving there, we have that

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

and therefore that $d$ satisfies the triangle inequality.
Therefore $d$ is a metric on $\mathbb{R}$.
(b) Define a sequence in $\mathbb{R}^{2}$ by $x_{n}=\left(\frac{1}{n} \cos (n), \frac{1}{n} \sin (n)\right)$, for $n \in \mathbb{N}$. Decide whether or not this sequence converges. Either prove that it does not converge, or prove that it does and find its limit point.
Claim: This sequence converges to $0=(0,0)$.
Proof: Let $\epsilon>0$, and choose $N$ such that $1 / N \leq \epsilon$. Then for any $n \geq N$, we have that $1 / n \leq 1 / N<\epsilon$. Thus we have

$$
d\left(x_{n}, 0\right)=\sqrt{\left(\frac{1}{n} \cos (n)-0\right)^{2}+\left(\frac{1}{n} \sin (n)-0\right)^{2}}=\sqrt{\frac{1}{n^{2}}\left(\cos ^{2}(n)+\sin ^{2}(n)\right)}=\sqrt{\frac{1}{n^{2}}}=\frac{1}{n}<\epsilon
$$

This proves that this sequence converges to 0 -
3. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, and $f: X \rightarrow Y$ be a continuous function.
(a) Prove that if the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $X$ converges to $x \in X$, then the sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ in $Y$ converges to $f(x) \in Y$.
Proof: Let $\epsilon>0$, then since $f$ is continuous there exists a $\delta>0$ such that for all $z \in X$ if $d(z, x)<\delta$, then $d(f(z), f(x))<\epsilon$. Since the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to $x$, there exists, for this choice of $\delta$ an $N \geq 1$ such that for all $n \geq N$ we have that $d\left(x_{n}, x\right)<\delta$. But by the previous sentence, this implies that $d\left(f\left(x_{n}\right), f(x)\right)<\leq \epsilon$. This proves that the sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ converges to $f(x)$ •
(b) Provide an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$, and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $\mathbb{R}$ such that the sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ converges, but the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ does not converge.
Example: For each $n \geq 1$ define $x_{n}=(-1)^{n}$. The sequence does not converge since for any $N \geq 0$ there is an $n \geq N$ such that $1=d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, x\right)+d\left(x, x_{n+1}\right)$, for every $x \in \mathbb{R}$. Let $f(x)=|x|$, then for every open interval $(a, b) \subset \mathbb{R}$, we have that $f^{-1}(a, b)=(-b,-a) \cup(a, b)$ is the union of two open intervals, and thus is open. Since open intervals form a basis for the topology on $\mathbb{R}$ we have that $f$ is continuous. Note that $f\left(x_{n}\right)=1$ for all $n$, so that the sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ is a constant sequence. Thus for any $\epsilon>0$ let $N=1$, then for any $n \geq N$ we have that $d\left(f\left(x_{1}\right), 1\right)=0<\epsilon$. Thus this sequence converges.
4. Let $X$ and $Y$ be sets a function $f: X \rightarrow Y$ is called a bijection if there exists a function $g: Y \rightarrow X$ such that both of the following equalities hold

$$
g(f(x))=x \text { for all } x \in X,
$$

and

$$
f(g(y))=y \text { for all } y \in Y .
$$

Prove that such a function $g$ is unique. That is to say that if there are function $g_{1}: Y \rightarrow X$ and $g_{2}: Y \rightarrow X$ each of which satisfys the above equations, then $g_{1}(y)=g_{2}(y)$, for all $y \in Y$.

Proof: Assume that we have functions $g_{1}, g_{2}: Y \rightarrow X$ such that $g_{1}(f(x))=x=g_{2}(f(x))$ for all $x \in X$, and $f\left(g_{2}(y)\right)=y=f\left(g_{2}(y)\right)$ for all $y \in Y$. Let $y \in Y$, define $z_{1}=g_{1}(y)$, and $z_{2}=g_{2}(y)$. By using these identities we have the following

$$
g_{1}(y)=g_{1}\left(f\left(g_{2}(y)\right)=g_{1}\left(f\left(z_{2}\right)\right)=z_{2}=g_{2}(y) .\right.
$$

Thus $g_{1}=g_{2}$ •

