MTH 410 - Homework 1 - Due: 4/22/2016

1. Let

X be the collection of all continuous function from the closed unit interval [0,1] to the real

numbers R. Define the function

(a)
(b)
()

d(f,g) = sup{|f(z) — g(x)| for z € [0,1]}.

Prove that d is a metric on X.
Is d a metric if the word continuous is is removed from the definition of X7 Justify you answer.
Find the exact value of d(/x,x?). Show your work.

Proof: We verify the four conditions required to be a metric:
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d(f,g) > 0 for every f,g € X,

Let f,g € X, since d(f,g) is defined to be a supremum we know that d(f,g) > |f(x) — g(z)|
for all x € [0,1]. The absolute value function takes only non-negative values, so we know that
|f(xz)—g(z)| > 0for all x € [0,1]. Thus for any = € [0, 1] we have that d(f,g) > |f(z) —g(x)| >0
as desired.

For any f,g € X, d(f,g9) = 0 if and only if f = g,

Let f,g € X, assume that f = ¢g. This means that f(x) = g(z) for all z € [0, 1], thus |f(z) —
g(x)] = 0 for all x € [0,1]. Therefore, we have that d(f,g) = sup{0} = 0. Now assume
that d(f,g) = 0. This means that 0 = d(f,g) > |f(x) — g(z)| > 0 for all z € [0,1]. Thus
|f(x)—g(z)| = 0 for all x € [0,1]. This implies that f(z) = g(x) for all x € [0, 1], and thus f = g.

d(f,9) = d(g, f), for every f,g € X,

Let f,g € X. Since |f(x) — g(z)| = [(—=1)(g9(x) — f(z))| = |g(z) — f(x)| we have the equality of
sets {|f(x) —g(z)| : x € [0,1]} = {|g(x) — f(z)| : © € [0,1]}. Thus the supremum of each of these
two sets is equal. This means that d(f, g) = d(g, f).

d(f,h) <d(f,g)+d(g,h), for all f g,hinX.

Let f,g,h € X. For any = € [0, 1] the definition of supremum and the triangle inequality for
absolute value give us the following:

[f (@) = h2)| = |f(2) — g(x) + g(x) — h(z)| < [f(x) — g(x)| + |g(x) — h(z)| < d(f,9) + d(g, h).

This implies that d(f, g) + d(g, h) is an upper bound for the set {|f(z) — h(x)| : z € [0,1]}. Thus
by the definition of supremum

d(f,h) <d(f,g)+d(g,h).

Therefore d is a metric on X,
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2. For z = (z1,79), and y = (yi,y2) in R? define

d(z,y) = /(21 — 11)? + (39 — 3a)?

(a) Prove that d is a metric on R.
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Proof: We verify the four conditions required to be a metric:

e d(z,y) > 0 for every z,y € R?

The output values of the function f(z) = \/z are always non-negative. Therefore this property
is satisfied.

For any z,y € R, d(z,y) = 0 if and only if z =y,

Let * = (z1,22),y = (y1,92) for xq1,x9,y1,y2 € R. Note that f(z) = /2 = 0 if and only if
z=0. Thus d(z,y) = \/(z1 — y1)* + (x2 — y2)? = 0 if and only if (z1 — vy1)? + (22 — y2)? = 0.
since each summand is non-negative, this equality is true if and only if both (z; —y;)* = 0
and (x9 — 92)? = 0. The first of these is ture if and only if z; = y;, and the second is true if
and only if x5 = y,. These last statements are true if and only if x = y. This is the desired
result.

d(z,y) = d(y,x), for every z,y € R,
Let z = (v1,22),y = (y1, y2) for x1, 29,41, 92 € R. Since (9131—91)2 = (y1—1'1)2 and (9132—y2)2 =
(y2 — x2)? we have that

d(z,y) = V(@1 —y1)? + (@2 — 12)2 = V(41 — 21)? + (y2 — 22)> = d(y, ).

d(z,z) <d(x,y) +d(y, 2), for all z,y,z € R.

Let © = (z1,22),y = (y1,v2),2 = (21, 22) for x1, 2, y1,Ys, 21, 22 € R. First define a = x; —
Y1,b = y1 — 21,¢ = Ty — Yo, d = Yy — 2o. Now note that d(z,y)* = a>+c? and d(y, 2)? = b* +d?,
and

d(z,2)” = (21— 21)*+ (22— 2)" = (11 —y1+y1 —21)° + (22— Yo+ 92— 22)° = (a+b)*+(c+d)*.
Expanding this last equation and simplifying using the two equations before it gives
d(z,2)* = a® + 2ab + b + ¢ + 2cd + d* = d(z,y)* + d(y, 2)* + 2(ac + bd).
The second thing to note is that
(d(z,y) + d(y, 2))? = d(z,y)* + 2d(z,y)d(y, z) + d(y, 2)*.

Lemma:
ab+ cd < d(z,y)d(y, z).

Proof of Lemma First note that
0 < (ac — bd)? = a*c* — 2adbc + b*d?,
and therefore we have that 2adbc < a?c? + b*d?. Adding a?b? + c2d? to both sides gives
a’b? + 2adbe + Pd* < a’b* + a°® + bd® + Pd?
Now note that the left side is (ab + ¢d)?, and the right side is
a’b® + a*c® + V*d® + Ad? = (a® + &) (V¥ + &*) = d(z,y)*d(y, 2)?

Homework 1



(b)
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Thus we have proven that
(ab+ cd)® < (d(z,y)d(y, 2))*.
Again since the function z — 22 is an order preserving function on the positive real numbers,

this proves the desired inequality,
With this inequality, we have proven that

d(z,2)* < (d(z,y) +d(y, 2))*.

Since the function z — 22 is an increasing function on the positive real numbers, and therefore
order preserving there, we have that

d(z,z) <d(z,y) + d(y, 2),

and therefore that d satisfies the triangle inequality.
Therefore d is a metric on R,

Define a sequence in R? by z,, = (£ cos(n), 2 sin(n)), for n € N. Decide whether or not this
sequence converges. Either prove that it does not converge, or prove that it does and find its
limit point.

Claim: This sequence converges to 0 = (0, 0).

Proof: Let ¢ > 0, and choose N such that 1/N < e. Then for any n > N, we have that
1/n <1/N < e. Thus we have

d(x,,0) = \/(l cos(n) —0)2 + (l sin(n) — 0)2 = \/i(cos2(n) + sin?(n)) = — =-<e

n n n? n

This proves that this sequence converges to O,
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3. Let
(a)
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(X,dx) and (Y, dy) be metric spaces, and f: X — Y be a continuous function.

Prove that if the sequence {z,}7>, in X converges to z € X, then the sequence {f(z,)}?>, inY
converges to f(z) € Y.

Proof: Let ¢ > 0, then since f is continuous there exists a o > 0 such that for all z € X
if d(z,z) < §, then d(f(z), f(z)) < e. Since the sequence {x,}°, converges to x, there exists,
for this choice of § an N > 1 such that for all n > N we have that d(z,,z) < 6. But by
the previous sentence, this implies that d(f(z,), f(z)) << e. This proves that the sequence
{f(zn)}5°, converges to f(x),

Provide an example of a continuous function f: R — R, and a sequence {z,,}>°; in R such that
the sequence {f(z,)}5°, converges, but the sequence {z,}°, does not converge.

Example: For each n > 1 define z,, = (—1)". The sequence does not converge since for any
N > 0 there is an n > N such that 1 = d(z,, zp,1) < d(zp, x) + d(x, 2,41), for every z € R.
Let f(z) = |x|, then for every open interval (a,b) C R, we have that f~!(a,b) = (—b, —a) U (a,b)
is the union of two open intervals, and thus is open. Since open intervals form a basis for the
topology on R we have that f is continuous. Note that f(z,) = 1 for all n, so that the sequence
{f(z,)}5°, is a constant sequence. Thus for any € > 0 let N = 1, then for any n > N we have
that d(f(x1),1) = 0 < e. Thus this sequence converges,
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4. Let X and Y be sets a function f: X — Y is called a bijection if there exists a function g : Y — X
such that both of the following equalities hold

g(f(z)) =z for all z € X,

and
flg(y)) =y forally €Y.

Prove that such a function ¢ is unique. That is to say that if there are function ¢; : ¥ — X and
g2 1 Y — X each of which satisfys the above equations, then ¢;(y) = ¢2(y), for all y € Y.

Proof: Assume that we have functions g1, g2 : Y — X such that ¢;(f(z)) = x = ¢2(f(x)) for all x € X,
and f(g2(y)) =y = f(g2(y)) for all y € Y. Let y € Y, define z; = ¢1(y), and 25 = ¢2(y). By using these
identities we have the following

91(v) = 91(f(92(y)) = 91(f(22)) = 22 = ga(y).
Thus g1 = goe

MTH 410 Homework 1



