
Remark 1.1. These notes are my interpritation of section 4.2.1 of Lück’s ’A basic
Introduction to Surgery Theory.’ This section is titled: Symmetric Forms and
Surgery Kernels. The goal is to introduce symmetric forms, and to show how such
foms arise naturaly in surgery theory. In an effort to make the presentation as
accesable as possible we arange the order of presentation slightly differently than
Luëk and fill in some details of certain arguments.

2. Symmetric Forms

Definition 2.1. A ring with involution R is an associative ring R with unit 1 and
a unital ring anti-homomorphism − : R → R : r 7→ r such that (−)

2
= idR. In

particular this means that r · s = s · r, r = r, r + s = r + s, and 1 = 1.

Remark 2.2. Let M be a left R-module. We can give M the structure of a
right R-module by defining the action of s ∈ R on r ∈ R by r · s = s · r. The
space M∗ = homR (M,R) comes with a natural right R-module structure given by
(f · r) (s) = f (s) · r for r, s ∈ R and f ∈M∗. When R is a ring with involution, we
can give M∗ a canonical left R-module structure by (r · f) (s) = f (s) · r. Thus, we
can consider both M and M∗ as left R-modules, or both as right R-modules.

The left R-module M comes equipped with the following canonical left R-module
homomorphism

e (M) : M → (M∗)
∗

which is defined by evaluation

(e (M) (x)) (f) = f (x),

for every f ∈M∗ and x ∈M . Here we are viewing (M∗)
∗

as a left module via the
action

(r · α) (f) = α (f) · r
for r ∈ R, f ∈ M∗ and α ∈ (M∗)

∗
. This is the left R-modules structure defined

using the involution on R and the left R-module structure on M∗.

Definition 2.3. Let ε ∈ Z (R) such that ε2 = 1. That is to say that ε is a
central idempotent in R. An ε-symmetric form (P, φ) over R is a finitely-generated
projective left R-module P together with a left R-module homomorphism φ : P →
P ∗, such that the following diagram commutes

P
e(P ) //

ε·φ   

(P ∗)
∗

φ∗
||

P ∗

.

The form (P, φ) is called non-degenerate if φ is an isomorphism.

Remark 2.4. Given an ε-symmetric form (P, φ) we can use the involution in R to
give P the structure of both a left R-module and a right R-module. Using the left
R-module structure on the left and the right on the right we can define the abelian
group P ⊗R P . Using this we can defined the following map

λ : P ⊗R P → R : (p, q) 7→ φ (p) (q) .

Another way of writing this is that λ (p, q) = (e (P ) (q)) (φ (p)) = φ∗ (e (P ) (q)) (p).
Since the above diagram is required to commmute we have the follwing identity
λ (p, q) = ε · φ (q) (p) = ε · λ (q, p). So that

λ (q, p) = ε · λ (p, q).
1
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This justifies the term ε-symmetric form. Notice that the R-linearity of φ implies,
among other things, that λ (r · p, q) = λ (p, q) · r, and λ (p, r · q) = rλ (p, q), and
that λ is bi-linear.

If the form (P, φ) is non-degenerate then φ is an isomorphism, and hence the
bilinear form λ is non-degenrate. That is to say that if λ (p, q) = 0 for all q, then
p = 0.

Example 2.5. Let P be a finitely genearted projective left R-module. We define
the standard hyperbolic ε-symmetric form Hε (P ) = (P ⊕ P ∗, φ), where φ is defined
as follows:

φ (p, f) (q, g) = ε · f (q) + g (p)

This is clearly additive in both the (p, f)-variable, and in the (q, g)-variable. We
are viewing P ⊕ P ∗ as a left module with action defined by r · (p, f) = (r · p, r · f).
Thus

φ (r · (p, f)) (q, g) = ε · f (q) · r + g (p) · r = (r · φ (p, f)) (q, g) ,

and
φ (p, f) (r · (q, g)) = r · φ (p, q) (q, g)

So that φ is a left R-module homomorphism.
We now verify that the desired diagram commutes. We have that

φ∗ (e (P ⊕ P ∗) (p, f)) (q, g) = e (P ⊕ P ∗) (p, f) (φ (q, g)) = φ (q, g) (p, f)

Using the definition of φ and the fact that ε · f (q) = f (q) ε we have that this
becomes

φ (q, g) (p, f) = ε · g (p) + f (q) = g (p)ε+f (q) =
(
f (q) ε+ g (p)

)
ε = ε·φ (p, f) (q, g) .

This shows that the desired digram commutes. Therefore the Hε (P ) is an ε-
symmetric form.

After identifying (P ⊕ P ∗)∗ ∼= P ∗ ⊕ (P ∗)
∗

we can write φ as a composition of
the matrix (

0 1
ε 0

)
: P ⊕ P ∗ → P ∗ ⊕ P

with the map
1⊕ e (P ) : P ∗ ⊕ P → P ∗ ⊕ (P ∗)

∗

Thus φ is an isomorphism if and only if e (P ) is an isomorphism. This is true when
P is finitely-generated and projective. Thus the standard hyperbolic ε-symmetrc
form Hε (P ) is non-degenerate.

3. Surgery Kernels

Remark 3.1. Let M be a connected closed manfiold of dimension n, and X be a
connected finite Poincaé complex of dimension n. Fix a vector bundle ξ : E → X.
A normal map for ξ is a pair of morphism

(
f, f

)
sucht that f : M → X is a

continuous map, and f : TM ⊕Ra → E is a bundle morphism covering f , for some
a ≥ 0. Here Ra denotes the trivial a-dimensional vector bundle. We assume that
this normal map has degree 1. That is to say that f∗[M ] = [X], where [M ] is the
fundamental class of M and [X] is the fundamental class of X. Choose a base point
b ∈ M , we further assume that f∗ : π1 (M, b) → π1 (X, f (b)) is an isomorphism.

Letb̃ ∈ M̃ and f̃ (b) ∈ X̃ be choices of lifts of b and f (b) to the respective universal

cover. This determines a lift f̃ : M̃ → X̃ which is equivariant with respect to the
action of the respective fundamental groups. We will now define the surgery kernel
associated to the above data, and we will show that it gives rise to an ε-symmetric
form over the group ring Zπ. Here we identify π = π1 (M, b) ∼= π1 (X, f (b)), and

consider f̃ as a π-equivariant map.
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The map f̃ induces two long exact sequences of Zπ-modules

// Hn−r
(
f̃
)

j∗ // Hn−r
(
X̃
)

f̃∗
// Hn−r

(
M̃
)

δ∗ // Hn−r+1
(
f̃
)

//

and

// Hr+1

(
f̃
)

δ∗ // Hr

(
M̃
)

f̃∗ // Hr

(
X̃
)

j∗ // Hr

(
f̃
)

//

The normal map
(
f, f

)
has degree 1, and therefore the cap product with the

fundamental class induces the following commutative diagram of Zπ-modules, in
which the vertical maps are isomorphisms

Hn−r
(
M̃
)

−∩[M ]

��

Hn−r
(
X̃
)

f̃∗
oo

−∩[X]

��

Hr

(
M̃
)

f̃∗ // Hr

(
X̃
)

This implies that f̃∗ is injective and f̃∗ is surjective. It follows that the maps j∗

and j∗ both vanish, and we have the following short exact sequences for every r ≥ 0

0 // Hn−r
(
X̃
)

f̃∗
// Hn−r

(
M̃
)

δ∗ // Hn−r+1
(
f̃
)

// 0

and

0 // Hr+1

(
f̃
)

δ∗ // Hr

(
M̃
)

f̃∗ // Hr

(
X̃
)

// 0

Definition 3.2. The homological surgery kernel of the normal map
(
f, f

)
is defined

for each r ≥ 0 to be

Kr

(
M̃
)

= Hr+1

(
f̃
)

and the cohomological surgery kernel of the normal map
(
f, f

)
is defined for each

r ≥ 0 to be

Kn−r
(
M̃
)

= Hn−r+1
(
f̃
)

Furthermore, since −∩[M ] is an isomorphism, we have the Zπ-module morphism

Φ∗ : Hr+1

(
f̃
)
→ Hn−r+1

(
f̃
)

defined to be

Φ∗ = δ∗ ◦ (− ∩ [M ])
−1 ◦ δ∗

which makes the following diagram commute

0 Kn−r
(
M̃
)

oo Hn−r
(
M̃
)

δ∗
oo

−∩[M ]

��

Hn−r
(
X̃
)

f̃∗
oo

−∩[X]

��

0oo

0 // Kr

(
M̃
)

δ∗ //

Φ∗

OO

Hr

(
M̃
)

f̃∗ // Hr

(
X̃
)

// 0

A simple diagram chasing agrument shows that Φ∗ is an isomorphism for all r ≥ 0.

Proposition 3.3. (1) The cap product − ∩ [M ] induces an isomorphism

− ∩ [M ] : Kn−r
(
M̃
)
→ Kr

(
M̃
)

for all r ≥ 0.
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(2) If f is r-connected then there is are natural Zπ-module isomorphism

πr+1 (f) ∼= πr+1

(
f̃
)
∼= Hr+1

(
f̃
)

= Kr

(
M̃
)
.

The first induced by the universal cover, and the second is the Hurewicz
homomorphism.

Proof. Item 1 is proven in the paragraph before the proposition. The second isomor-
phism in item 2 follows from the relative Hurewicz theorem since f is r-connected.
The fist isomorphism in item 2 follows from the long exact sequence of homotopy
groups of a fibration. We apply this long exact sequence to the universal covers of
M and X. Since the fibers are discrete we have that the homotopy groups of the
universal cover are isomorphic to those of the base whenever we are in degree > 1.
The result now follows from the five-lemma. �

Remark 3.4. We now assume that f̃ is k-connected and that n = 2k, with k ≥ 2.
In this case we will show that the surgery kernel defined above gives rise to a (−1)k-
symmertric form over Zπ with the w-twisted involution. We need first to define
choose the appropriate Zπ-module and define a duality morphism.

Recall that there is a Kronecker product

〈, 〉 : Hk
(
M̃
)
×Hk

(
M̃
)
→ Zπ

which is induced by the evaluation pairing

homZπ

(
Cp

(
M̃,Zπ

))
× Cp

(
M̃
)
→ Zπ : (α, x) 7→ α (x) .

This paring induces a pairing

〈, 〉 : Kk
(
M̃
)
×Kk

(
M̃
)
→ Zπ.

This is well defined because of the identity〈
f̃∗ (α) , δ∗ (x)

〉
= f̃∗ (α) (δ∗ (x)) = δ∗f̃∗ (α) (x) = 0.

Since n = 2k we have the isomorphism

Φ∗ : Kk

(
M̃
)
→ Kk

(
M̃
)

Thus we have a well defined pairing

s = 〈, 〉 ◦ (Φ∗ × 1) : Kk

(
M̃
)
×Kk

(
M̃
)
→ Zπ.

Which, for x, y ∈ Kk

(
M̃
)

, takes the value

s (x, y) = Φ∗ (y) (x)

This gives rise to

φ : Kk

(
M̃
)
→ Kk

(
M̃
)∗

: x 7→ Φ∗ (x) ,

which is a Zπ-module homomorphism since it is the restriction of the inverse of
− ∩ [M ] which is constructed to be a Zπ-module homomorphism.

Now we have a candidate
(
Kk

(
M̃
)
, φ
)

for an (−1)
k
-symmetric form over Zπ.

We still need to verify that φ satisfies the relation Φ∗ (x) (y) = (−1)
k

Φ∗ (y) (x),

and that Kk

(
M̃
)

is a finitely generated projective Zπ-module

Definition 3.5. Let Ik

(
M̃
)

be the set of pointed homotopy classes of pointed

immersions from Sk to M̃ .
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To see that this is (−1)
k
-symmetric, we identify the groups

Kk

(
M̃
)
∼= Ik

(
M̃
)
,

and the pairing s with the pairing

λ : Ik

(
M̃
)
× Ik

(
M̃
)
→ Zπ,

which we know to be (−1)
k
-symmetric. The following proposition does this for us.

Proposition 3.6. There is a Zπ-module homomorphism

tk : Kk

(
M̃
)
→ Ik (M)

which makes the following diagram commute

Kk

(
M̃
)
×Kk

(
M̃
)

s

))
tk×tk

��

Zπ

Ik

(
M̃
)
× Ik

(
M̃
) λ

55

Proof. Let x ∈ Kk

(
M̃
)

, using the inverse of the Hurewicz isomorphism we identify

x as an element of πk+1

(
f̃
)

. By theorem 3.59 parts 1 and 2 we may represent x

by a commutative diagram

Sn
q //

��

M

f

��
Dn+1 Q // X

where, among other things, q is an immersion whose regular homotopy class depends
only on the class x. The map tk is defined by sending x to the class [q].

The Hurewics homomorphism fits into the following commutative diagram

πk+1

(
f̃
)

δ# //

hf̃

��

πk

(
M̃
)

hM̃

��

Hk+1

(
f̃
)

δ∗ // Hk

(
M̃
)
.

If we view the class [q] as an element of πk

(
M̃
)

then we have that δ# (x) = [q].

We already know that hf̃ is an isomorphsm and δ∗ is injective. Thus the element

δ ◦ hf̃ (x) = hM̃ ◦ δ# (x) = hM̃ [q]

is non-zero whenever x is non-zero. That is to say for 0 6= x ∈ Kk

(
M̃
)

the

homology class δ∗ (x) can be represented by an immersion q : Sk → M̃ . Given

x, y ∈ Kk

(
M̃
)

the pairing Φ∗ (x) (y) is given by evaluating the Poincaré dual of

x on the element y. This gives the same value as taking the cup product of the
Poincaré dual of δ∗ (x) with the Poincaré dual of δ∗ (y) and evaluating the resulting
product on [M ]. It can be shown that this is exactly the intersection number of the
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immersions representing δ∗ (x) and the immersion representing δ∗ (y). But this is
exactly the pairing λ applied to tk (x) and tk (y). Thus the diagram commutes. �

Remark 3.7. We will now show that Kk

(
M̃
)

is a finitely generated projective

Zπ-module. We will prove a stronger statement, that Kk

(
M̃
)

is finitely generated

and stably free. This has the consequence that in the reduced Grothendeick group

of finitely generated projective Zπ-module, K̃0 (Zπ) the class [Kk

(
M̃
)

] = [0].

Definition 3.8. A finitely generated R-module V is stably free if there are non-
negative integers l and m and an isomorphism

V ⊕Rl ∼= Rm.

Proposition 3.9. If f : X → Y is k-connected for n = 2k, or 2k+1, then Kk

(
M̃
)

is finitely generated and stably free.

Proof. Since M is a smooth compact manifold we know that Hk
(
M̃
)

is finitely

generated over Zπ, thus there is an integer l ≥ 0 and a surjective map

(Zπ)
l → Hk

(
M̃
)
→ Kk

(
M̃
)
∼= Kk

(
M̃
)
,

where the middle map comes from the short exact sequence above. Therefore

Kk

(
M̃
)

is finitely generated. We need now to see that it is projective.

Consider the chain complex C∗

(
f̃
)

, This is the cellular chain complex of the

mapping cone on f . Thus each Ck

(
f̃
)

is a finitely generated free Zπ-module. Since

f̃ is k-connected we have that imdr = ker dr−1 for all r ≤ k. For each r ≤ k+ 1 we
have the following exact sequence

ker dr // Cr
(
f̃
)

// ker dr−1
// 0

Note that C0

(
f̃
)

= ker d0 is a finitely generated free Zπ-module. The above

exact sequence allows us to proceed inductively to deduce that ker dr is a finitely
generated Zπ-module.

The inclusion i : ker dk+1 → Ck+1

(
f̃
)

induces a chain homotopy equivalence

i∗ : D∗ → C∗

(
f̃
)

, where D∗ is the chain complex

· · · // Ck+2

(
f̃
)

dk+2 // ker dk+1
// 0 // · · ·

Similarly we can consider the chain complex Cn+1−∗
(
f̃
)

. The fact that f̃ is

k-connected again impliex that we can Cn+1−∗
(
f̃
)

is chain homotopy equivalent

to a chain complex En+1−∗ given by

· · · // Cn+1−(k+1)
(
f̃
)
dn+1−(k+1)

//// ker dn+1−k // 0 · · ·

where ker dn+1−k is in the degree k+ 1 position. The duality morphism Φ∗ defined
above is induced by a chain morphism, and thus induced a chain homotopy equiv-

alence C∗+1

(
f̃
)
' Cn+1−∗

(
f̃
)

. Thus we have the sequence of chain homotopy

equivalences

homZπ

(
C∗+1

(
f̃
)
, imdk+2

)
' homZπ

(
Cn+1−∗

(
f̃
)
, imdk+2

)
' homZπ

(
En+1−∗, imdk+2

)
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Since En+1−r = 0 for all r ≤ k, we have that the cohomology group

Hk+2
(

homZπ

(
C∗+1

(
f̃
)
, imdk+2

))
= 0

This implies that the following sequence is exact at the middle term

homZπ

(
Ck+1

(
f̃
)
, imdk+2

) d#k+2 // homZπ

(
Ck+2

(
f̃
)
, imdk+2

) d#k+1 // homZπ

(
Ck

(
f̃
)
, imdk+2

)
The map dk+2 is an element in the middle term and d#

k+1 (dk+2) = 0 thus there

exists a map φ : Ck+1

(
f̃
)
→ imdk+2 such that φ ◦ dk+2 = dk+2.

Let j : imdk+2 → Ck+1

(
f̃
)

be the inclusion. We know that j ◦ dk+2 = dk+2.

Thus we have
φ ◦ j ◦ dk+2 = φ ◦ dk+2 = dk+2.

Since dk+2 is surjective onto its image we have that

φ ◦ j = idim dk+2

Therefore imdk+2 is isomorphic to a direct summand of Ck+1

(
f̃
)

, and hence it

is projective. Thus imdk+2 is also isomorphic to a direct summand of ker dk+1,

and its complimentary summand is isomorphic to Hk+1

(
f̃
)

= Kk

(
M̃
)

. Hence we

have that Kk

(
M̃
)

is a finitely generated projective Zπ-module.

We note that this means that

Ck+1

(
f̃
)
∼= ker dk+1 ⊕ imdk+1

∼= imdk+2 ⊕Hk+1

(
f̃
)
⊕ imdk+1.

Furthermore by Poincare duality and the fact that f̃ is k-connected we have that
the chain complexes

· · · // Ck+2

(
f̃
)

// imdk+2
// 0

and

0 // imdk+1
// Ck−1

(
f̃
)

// · · ·

are both acyclic, and hence so is their direct sum A∗. For an acyclic complex the
sum of the odd terms is isomorphic to the sum of the even terms. In this case we
have

imdk+2 ⊕ imdk+1 ⊕

⊕
i 6=0

Ak+1+2i

 ∼= ⊕Ak+2i.

Now adding Hk+1

(
f̃
)

to both sides gives on the left side

Hk+1

(
f̃
)
⊕ imdk+2 ⊕ imdk+1 ⊕

⊕
i 6=0

Ak+1+2i

 ∼= Ck+1

(
f̃
)
∼=
⊕

Ck+1+2i

(
f̃
)
.

and on the right

Hk+1

(
f̃
)
⊕
(⊕

Ak+2i

)
∼= Hk+1

(
f̃
)
⊕
(⊕

Ck+2i

(
f̃
))

Each Cr

(
f̃
)

is a free Zπ-module, thus Kk

(
M̃
)

= Hk+1

(
f̃
)

is stably free. �
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