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1. Motivation

Remark 1.1. We begin by examining some classical invariants associated to topo-
logical spaces. For convenience we will restrict our attention to smooth manifolds.
As such, in this paper we consider only smooth manfiolds with smooth maps be-
tween them.

In this first section we examine certain topological invariants of compact smooth
manfiolds without boundary that have the following two properties:

(1) These invariants vanish on any manifold that is the boundaries of another
manifold, and

(2) These invariants are additive over direct sums.

These two properties ensure that such topological invariants are in fact bordism
invariants. These will serve as motivation as to why we would want to define and
study the bordism category.

1.1. The Euler Characteristic.

Definition 1.2. Let K be a field, and η : Z → K the map sending 1Z to 1K . For
a topological space X and a positive integer k, the k-th Betti number of X is the
number

βk (X;K) = dimKHk (X;K) .

The Euler characteristic of X is the number

χK (X) = η

∑
i≥0

(−1)
i
βi (X;K)

 ∈ K.
Remark 1.3. LetM be a connected smooth manfiold of dimension n, and K = Z/2.
We know that M has Hn (M ;Z/2) ∼= Z/2 is generated by the fundamental class
[M ], and Hr (M ;Z/2) = 0 for r > n, and r < 0.

Date: July 2, 2014.

1
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euler1 Proposition 1.4. Assum that M = ∂N is the boundary of a smooth compact n+1-
dimensional manifold N . Then

χZ/2 (M) = 0 ∈ Z/2.

Proof. Assume that M = ∂N is the boundary of some n+ 1 dimensional manifold.
Let DN = N∪MN be the double of N obtained by gluing two coppies of N together
along their common boundary M . The Mayer-Vietoris property of homology now
shows that the Euler characteristic of DN is

χZ/2 (DN) = 2χZ/2 (N)− χZ/2 (M) = χZ/2 (M) ∈ Z/2.

We also know that the Euler characteristic of a compact odd dimensional manifold
without boundary is zero. Thus when n is odd then χZ/2 (M) = 0. If n is even
then n+ 1 is odd and χZ/2 (DN) = 0. Thus we have that χZ/2 (M) = 0 ∈ Z/2. �

euler2 Corollary 1.5. If M = M1 tM2 = ∂N the boundary of some manifold N , then

χZ/2 (M1) = χZ/2 (M2) .

Proof. This follows because the Euler characteristic is additive over disjoint unions
χK (M1 tM2) = χK (M1) + χK (M2). �

1.2. The Signature.

Remark 1.6. For any compact smooth n-dimensional manifold M without bound-
ary, an orientation of M is a homology class [M ] ∈ Hn (M ;R) such that for every
point x ∈ M the restriction Hn (M) → Hn (M,M \ x) ∼= Hn−1

(
Sn−1

) ∼= Z maps
[M ] to the generator of Hn (M,M \ x). If such an orientation exists, the we say
that M is oriented.

If M is oriented then M satisfies poincaré duality over Q. That is to say: There
is an isomorphism

DR
M : Hr (M ;Q) ∼= Hn−r (M ;Q) .

If n = 2m is even, then in degree m we have, by composing with the universal
coefficients theorem, the isomorphism

D : Hm (M ;Q) ∼= Hm (M ;Q) ∼= Hm (M : Q)

This in turn defines a nondegenerate bilinear form

BRM : Hm (M ;Q)⊗Hm (M ;Q)→ Q

which is symmertric if m is even.
To each nondegenerate symmetric bilinear form B : V ⊗ V → Q defined on a

Q-vector space V , one can define the signature σ (B) of B to be the number of

positive eigenvalues of B̂ minus the number of negative eigenvalues of B̂, where
B̂ : V → V † is the adjoint of B, and V † is the linear dual of V . This signature is
an integer.

Thus, in our case we have the signature σ (BM ) ∈ Z of BM , whenever n = 4k is
a multiple of 4. If n 6= 0 (mod 4), then we define the signature to be 0. It is easy to
see that σ

(
BRM

)
is additive over disjoint union since homology is. We now examine

the consequences of assuming that M = ∂N is the boundary of some compact
smooth manifold N of dimension 4n+ 1.

Proposition 1.7. Let M be a compact smooth oriented 4m-dimensional manfiold
without boundary. If M = ∂N for some compact smooth oriented 4n+1 dimensional
manifold N then the signature of M vanishes

σ (BM ) = 0.
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Proof. We consider the long exact sequence of cohomology groups associated to the
piar (N, ∂N = M).

· · ·
j2k// H2k (N ;Q)

i2k // H2k (M ;Q)
δ2k // H2k (N,M ;Q)

j2k+1

// · · · .

Since these are Q-vector spaces, we may choose a splitting of δ2k, and by exactness
we get an isomorphism

H2k (M ;Q) ∼= coker j2k ⊕ ker j2k+1.

By degree consideration, under the pairing BM elements of coker j2k must pair with
elements of ker j2k+1, and vice-versa. In particular, since BM is nondegenerate, we

have coker j2k =
(
coker j2k

)⊥
, and ker j2k+1 =

(
ker j2k+1

)⊥
. By symmetry, and

the univeral coefficients theorem, we have that the dual of coker j2k is ker j2k+1,
and vice-versa. Thus dimQ ker j2k+1 = dimQ coker j2k. Thus ker j2k+1 forms a
Lagrangian subspace of H2k (M ;Q) with respect to BM . This means that σ (BM ) =
0. �

Corollary 1.8. If a compact smooth oriented manifold N has boundary ∂N =
M1 tM2 then

σ (DM1) = σ (DM2) .

Remark 1.9. In the above statement we note that the orientation of ∂N is deter-
mined uniquely by the orientation of N .

This shows that the signature of compact oriented smooth manfiold without
boundary is a bordism invariant. It should be pointed out though that this bordism
is slightly different from the bordism we used for the Euler characteristic. That is
to say, in our discussion on the Euler characteristic we never need the notion of
orientation, and we did not require any of our manifolds to be oriented. However, for
the signature, it is necessary to have an orientation on an manifold, and furthermore
it is necessary for the bordism between manifolds to also be oriented. Thus we see
the need to different types of bordisms depending on what it is we want to study.

2. Bordism

In this section we make it precise what is meant by bordism. We have already
seen naievly that a bordism is jsut a manifold with boundary. What needs to be
stressed is that a bordism should be thought of as a morphism between its bound-
ary components. This means that we need to specify the boundary components as
either inputs or outputs. So that we may specify the doman and codomain of the
morphism. Something else that must be considered is how one can define compo-
sition of morphism. This amounts to gluing bordisms along common boundaries.
Thus a bordism is a compact smooth manifold with boundary, along with a labeling
of the boundary components as either inputs or outputs, and data specifying how
to glue bordism together. This data useually come in the form of collar data. That
is, we specify an open collar neighborhood of the boundary along which we can
glue.

bordism Definition 2.1. Let M1,M2 be compact smooth manifolds without boundary of
dimension n. A bordism from M1 to M2 is a triple (N,φ, θ1, θ2), where N is
a smooth compact n + 1-dimensional manifold with boundary ∂N , φ : ∂M →
M1 tM2 a diffeomorphism, and θ1 : [0, 1)×M1 → N , θ2 : (−1, 0]→ N are smooth
embeddings such that φ ◦ θi|0×Mi : Mi →Mi is a the identity, for i = 1, 2.

Remark 2.2. If we are given a manifold M with boundary ∂M , then we define
a bordism by specifying a map c : π0 (∂M) → {1, 2}. Then c−1 (1) will be the
domain of the bordism, and c−1 (2) will be the codomain. One can show that for
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every manifold with nonempty boundary, the boundary has a collar neighborhood.
Thus we can specify the maps θi, for i = 1, 2 once we have the map c to tell us
whether to use the interval (−1, 0] or [0, 1).

Therefore a single manifold with boundary can be viewed as several bordisms.
For example [0, 1] ×M can be viewed as a morphism from M to M , from ∅ to
M tM , or from M tM to ∅ depending on how we choose c.

Proposition 2.3. For smooth compact closed n-manifolds, we say that the dif-
feomorphism class [M ] of M is equivalent to the diffeomorphism class [N ] of N ,
[M ] ∼ [N ], if there is a bordism from M to N . This defines an equivlanece relation
on the set of diffeomorphism classes of smooth manifolds.

Proof. This is clearly symmetric and reflexive. To see that it is transitive note that
one can glue the out going collar of a bordism to the incoming collar of another
bordism, provided they are diffeomorphic. �

Definition 2.4. Let Nn denote the set of equivalence classes of diffeomorphism
classes of smooth manifolds under the relation of bordism. Define [M ] + [N ] =
[M tN ]. This defines a symmetric associative operation on Nn with zero element
0 = [∅]

Remark 2.5. Notice that M tM is bordant to ∅, so that [M ] + [M ] = 0. Thus
every element in Nn has order 2, and −[M ] = [M ] is the inverse to [M ]. Thus Nn

is a group. We call this the n-bordism group.
We can see already from

euler1
1.4, and

euler2
1.5 that the Euler characteristic is bordism in-

variant. Thus for any equivalence class [M ] ∈ Nn, the assignment [M ] 7→ χZ/2 (M)
is well defined. Furthermore this assignment is additive. Hence we have a well
defined group homomorphism

χZ/2 : Nn → Z/2 : [M ] 7→ χZ/2 (M) .

Such a map exists for every n ≥ 0. Such a homomorphism is sometimes called a
genus.

Definition 2.6. The n-bordism category Bordn is the category whose objects are
smooth closed compact n-dimensional manifolds. A morphism between two such
manfiolds, from M1 to M2, is a diffeomorphism class of bordism,

bordism
2.1, from M1 to

M2, where the diffeomorphisms between bordisms are required to commute with
the end maps θ1 and θ2.

Remark 2.7. For the manfiold M the identity map is give by the cobordism
M × [0, 1], with end maps θ1 and θ2 the inclusion, and the inclusion shifted by +1,
respectively. The map φ is the inclusion of M at each end.

Composition of morphism is given in the same way that the transitivity of ∼
was proven. For a bordism from M1 to M2 and a bordism from M2 to M3 we can
glue the outgoing end of M1 to the incoming end of M2. This can be done in a
smooth way so that the smooth structure on the resulting manfiold is unique up to
diffeomorphism. This is the reason why we require morphisms to be diffeomorphism
classes of bordisms, rather than just bordisms themselves.

This category can be give the structure of a symmetric monoidal category. The
unit object is the empty n-dimensional manfiold, and the product structure is given
by disjoint union.

3. Bordisms of Tangential Structures

Definition 3.1. A classifying space for a topological groups G is a fiber bundle
EG→ BG such that there is a 1− 1 correspondence between homotopy classes of
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maps M → BG and isomorhism classes of principle G-bundles E → M , for any
compact manifold M .

Remark 3.2. We are mostly concerned with the Lie groups On and O. The group
On is the group of n×n-matricies with real entries that are orthoginal with respect
to the usual inner product on Rn. One can include On into On+1 by taking a matrix
A to the block matric I1 ⊕A, where I1 is the 1× 1 identity matrix. The colimit is
defined to be the infinite orthoginal group O.

Definition 3.3. An n-dimensional tangential structure is a topological space Θn

and a fibration πn : Θn → BOn. A stable tangential structure is a topological space
Θ and a fibration π : Θ → BO. Since O is the colimit of the On we can always
pullback a stable tanential structure to an n-dimensional tangential structure.

If M is an r-dimensional manifold, let T̂M = Rn−r ⊕ TM be the Whitney sum

of the tangent bundle and the trivial n− r bundle on M . Let b̂TM : M → BOn the

classifying map for T̂M . A Θn structure on M is a lift of b̂TM over πm to a map
b̃TM : M → Θm. Similarly, a Θ sutrcture on M a family of Θn structures for each
n that are coherent with respect to the colimit maps.

Example 3.4. An orientation is the stable tangential structure Θ = BSO, where
SO is the infinite special orthoginal group, in this case the pullback Θn of Θ to BOn
is the classifying space BSOn of the special orthoginal group of real n×n-matricies.

Notice that a lift of b̃TM : M → BOn to a map b̂TM : M → BSOn is the same
as defining an SOn structure on the stablized tangent bundle T̃M = Rn−r ⊕ TM ,
which is the same as defining an orientation of T̃M , since Rn−r has a canonical
orientation.

A stable framing is the tangential structure given by the universal bundle EO →
BO. The bullback of this to the BOn’s givens the universal frame bundle EOn →
BOn. A lift of the classifying map of T̃M from BOn to EOn is the same as defining
a section of the frame bundle of T̃M , which is the same as defining a trivialization
of T̃M .

The above examples show that a tangential structure is just fancy way of encod-
ing that certain geometric requirements be placed on the tangent bundle. One can
similarly define spin structures, complex structures, etc.

Definition 3.5. We can now define the bordism category BordΘ
n of smooth man-

ifolds with a given tangential structure π : Θ → BO. The objects will consist of
compact smooth closed n-manfiolds with a Θ-structure. The morphisms will be
bordisms with Θ-structures that restrict to the boundaries appropriatly. We re-
quire the Θ-structures to respect the product structure on the ends given by the θi
maps, i = 1, 2.

If M has a Θ structure then on can extend it levelwise to a Θ structure on
M × [0, 1]. This gives the identity morphism for M . Similarly, for composition one
can glue the appropriate lifts associated to composable bordisms to get a lift for the
composition. This requires that the Θ structure of the bordisms be product-like on
the ends.

Example 3.6. Now the we can define the oriented bordism category BordSOn , and

the framed bordism category Bordfr
n simply as the cobordism category with the

appropriate tangential structure.
Similarly we can define bordism groups ΩΘ

n with tangential structure just as we
did without the tangetial structure. We note that the inverses still exist since we
can extend a tangential structure from M to M × [0, 1]. In this way we get the
oriented cobordism groups ΩSOn , and the framed cobordism groups Ωfr

n for every
n ≥ 0.
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Example 3.7. Let us calculate some low dimensional examples. When n = 0
things are relatively easy. Every compact 0-dimensional manifold is a finite union
of points. A compact 1-dimensional manifolds is a finite union of disjoing intervals
along with a finite number of disjoint circles. Thus in the cobordism group N0

an object is a diffeomorphism class of a finite collection x1, · · ·xn of points, or the
empty set ∅. Thus, since N0 is a group, there is a map from Z onto N0, that takes
1 to the class [pt] containing one point. Since the interval can be thought of as a
map from x t x → ∅, we have that under this surjective map 2 goes to 0. Thus,
since a single point is not the boundary of any 1-manifold, we have that N0

∼= Z/2,
generated by the class of a single point.

Since an orientation and a framing of a point are the same thing, we have that
ΩSO0 = Ωfr

0 . An oriented compact 0-manfiold is a finite collection of points labeled
with either + or −. We note now that the interval is a morphism between [pt,+]
and [pt,−]. Thus the surjective map given above that takes 1 to [pt, 1] is injective,
and we have that ΩSO0 = Ωfr

0
∼= Z.

4. Stong’s Cobordism Theory

Definition 4.1. A cobordism category is a triple (C, ∂, i) in which:

(1) C is a category having finite sums and an initial object;
(2) ∂ : C → C is an additive functor such that for each object X of C, ∂∂ (X)

is the initial object;
(3) i : δ → I is a natural transformation of additive functors from ∂ to the

identity functor I; and
(4) There is a small category C0 of C such that each object of C is isomorphic

to an object of C0.

Example 4.2. We define a triple (D, ∂, i) which satisfies the above conditions, and
is therefore a cobordism category. The category D is the category whose objects
are smooth compact manifolds, and whose maps are smooth boundary preserving
maps. The sum in this category is given by disjoint union, and the initial object
is the empty manifold. For each object of D its boundary is again an object of D,
and for any map in D the restriction to the boundary is again a map in D. This
restriction is compatible with composition, the identity maps, and preserves direct
sums. Thus we define the functor ∂ : D → D to be the functor that takes an object
X to its boundary ∂X, and takes a morphism to the restriction of that morphism to
the boundary. The boundary ∂X of X is a subset whose inclusion iX : ∂X → X is
a smooth map. Thus define the natural transformation between the functor ∂ and
the identity functor to assign to the object X the inclusion morphism iX : ∂X → X.
The Whitney embedding theorem says that every manifold is diffeomorphic to a
submanifold of countable dimensional Euclidean space. Thus the subcategory D0

of D consisting of all submanifold of R∞ is a small category and every object in D
is isomorphic to an object in D0.

Example 4.3. Let R be a commutative ring with unit 1 ∈ R. let CHfg,p
R be the

category of chain complexes of finitely generated projective modules over R with
chain complex homomorphisms. The initial object in this category is the chain
complex 0• with zero in every degree. The direct sum of chain complexes gives the
sum in this category. The functor ∂ is defined as follows ∂ (C•, d) = (Z (C•) , 0)
assigns to the chain complex C•, the kernel of d, Z (C•), with zero differential. The
natural transformation iC : Z (C•) → C• is the inclusion of the kernel. One can
realize any object in this category as the direct sumamnd of an ojbect all of whose
R-modules are free, and the category of chain complexes of free R-modules is a
small category.
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Definition 4.4. If (C, ∂, i) is a cobordism category, one says that the objects X
and Y of C are cobordant if there exists objects U and V of C such that the sum of
X and ∂U is isomorphic to the sum of Y and ∂V . This will be writen X ≡ Y , and
denoted X t ∂U ∼= Y t ∂V .

5. Topological Field Theories

This section follows Atiya’s classical paper.

Definition 5.1. A topological quantum field theory in dimesnion d over a ground
field R consists of the following data:

(1) A finitely generated R-module Z (Σ) associated to each oriented closed
smooth d-dimensional manifold Σ, such that Z (∅) = R.

(2) An element z (M) ∈ Z (∂M) associated to each oriented smooth (d + 1)-
dimensional manifold M .

(3) These data are subject to the following axioms:
a1 (a) Z is functorial with respect to orientation preserving diffeomorphisms

of Σ and M ;
a2 (b) Z is involutory, i.e. there is an isomorphism Z (Σ∗) ∼= Z (Σ)

∗
where

Σ∗ is Σ with the opposite orientation and Z (Σ)
∗

denotes the dual
module;

a3 (c) Z is multiplicative.
a4 (d) For each oriented closed smooth d-dimensional manifold Σ, when Σ×

[0, 1] has the orientation induced from that of Σ, we have z (Σ× [0, 1]) ∈
Z (Σ)⊗ Z (Σ)

∗
maps to the identity map under the canonical isomor-

phism Z (Σ)
∗ ⊗ Z (Σ) ∼= Hom (Z (Σ) , Z (Σ)).

We elaborate on these axioms below.

Remark 5.2 (Axiom
a1
3a). This axion says that any orientation preserving diffeo-

morphism f : Σ → Σ′ induces an isomorphism Z (f) : Z (Σ) → Z (Σ′) such that
if g : Σ′ → Σ′′ is another orientation preserving diffeomorphism, then Z (g ◦ f) =
Z (g)◦Z (f). Furthermore if f = F |∂M is the restriction of an orientation preserving
diffeomorphism F : M → M ′ with ∂M = Σ,and ∂M ′ = Σ′, then Z (f) (z (M)) =
z (M ′) ∈ Z (Σ′).

Remark 5.3 (Axiom
a2
3b). We consider only case when R is a field. In this case

the vector space Z (Σ∗) is the dual vector space Z (Σ)
∗
. Because Z (Σ) is finitely

generated we have Z (Σ) ∼= Z (Σ)
∗∗

, as it should be since Σ∗∗ = Σ.

Remark 5.4 (Axiom
a3
3c). This is the most important and the most complicated

axiom, so we will discuss it in detail. Firstly, this axiom says that for the disjoint
union of oriented smooth manfiolds Σ1tΣ2 we have Z (Σ1 t Σ2) = Z (Σ1)⊗Z (Σ2).
Consider the case when ∂M1 = Σ1 t Σ2, ∂M2 = Σ∗2 t Σ3, and M is obtained from
gluing M1 to M2 along the common boundary Σ2 via a orientation reversing diffeo-
morphism on a collar neighborhood, then we require that z (M) = 〈z (M1) , z (M2)〉,
where this denotes the natural dual pairing on the middle two components

Z (Σ1)⊗ Z (Σ2)⊗ Z (Σ2)
∗ ⊗ Z (Σ3)→ Z (Σ1)⊗ Z (Σ3) .

When Σ2 = ∅, so that M = M1 tM2 then z (M) = z (M1)⊗ z (M2).

Remark 5.5. Recal that for any vector spaces A and B over R we have that there
canonical isomorphisms

α : A∗ ⊗B → Hom (A,B) : α (f ⊗ b) (a) = f (a) · b,
and

p : A∗ ⊗B → Hom (R,A∗ ⊗B) : p (f ⊗ b) (r) = r · (f ⊗ b) .
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The map p has an inverse u (h) = h (1).
Since B is finite-dimensional we have that the evaluation map b 7→ evb : B∗ →

R from B to B∗∗ is an isomorphism. By composing with this map we get an
isomorphism

e : Hom (A,B)→ Hom (A,B∗∗) : e (g) (a) = evg(a).

We also have an isomorphism

β : Hom (A⊗B∗, R)→ Hom (A,B∗∗) : (β (H) (a)) (g) = H (a⊗ g)

Under these isomorphisms we see that given any compact smooth manifold M
whose boundary is Σ∗1 tΣ2, the element z (M) ∈ Z (Σ1)

∗⊗Z (Σ2) can be identified
with a map αz (M) ∈ Hom (Z (Σ1) , Z (Σ2)), a map pz (M) ∈ Hom (R,A∗ ⊗B), or
a map βeαz (M) ∈ Hom (A⊗B∗, R). We will abuse notation and use the same
symbold for all three elemets. The rule that z (M) = 〈z (M1) , z (M2)〉 when M =
M1∪Σ2

M2 translates under these isomorphisms to composition of function. That is
to say under this isomorphism we have z (M) = z (M2)◦z (M1) when thought of as
functions. This composition is associative since the above pairings are associative.
Therefore, one can view a bordism from Σ1 to Σ2 as inducing a morphism from
Z (Σ1)→ Z (Σ2), a morphism R→ Z (Σ1)

∗⊗Z (Σ2), and a map Z (Σ1)⊗Z (Σ2)
∗ →

R.
Notice that if M = Σ× [0, 1] the ∂M = Σ∗ t Σ. So this induces the morphisms

zI (M) : Z (Σ)→ Z (Σ) ;

z− (M) : R→ Z (Σ)
∗ ⊗ Z (Σ) ;

and

z+ (M) : Z (Σ)⊗ Z (Σ)
∗ → R.

Here zI (M) = idZ(M), and if we glue M to itself along its boundary we get a closed

manifold S1 ×M whose invariant satisfies

z
(
S1 × Σ

)
= z+ (M) ◦ z− (M) ∈ End (R) .

This map is determined by its value on 1, and an easy calculation shows that

z
(
S1 × Σ

)
= dimR Z (Σ) .

Example 5.6. Let M be a smooth compact n-dimensional manifold. Let F be a fi-
nite group, and BunF (M) the collection of principle F -bundles on M . Let ZF (M)
be the collection of functions BunF (M) → Z. If W is an n + 1-dimensional bor-
dism from ∂−W to ∂+W . Define the morphism zF (W ) : ZF (∂−W )→ ZF (∂+W )
by assigning to a function f : BunF (∂−W ) → Z, the function zF (W ) (f) :
BunF (∂FW ) → Z which when applied to the principle F bundle ξ over ∂+W
gives the output

1

|F |
∑
i∗+E
∼=ξ

f
(
i∗−E

)
,

where i∗± : BunF (W ) → BunF (∂±W ) is the restriction of bundles induced by
the appropriate inclusion, and the sum varies over all E ∈ BunF (W ) such that
i∗+E

∼= ξ. Notice that the above sum is an integer since for every E such that
i∗+E

∼= ξ every element of F defines an automorphism of ξ, thereby giving a different
isomorphis i∗+E

∼= ξ. Thus fore each E ∈ BunF (W ) there are are either 0, or |F |
different isomorhpisms i∗+E

∼= ξ.
Thus for a closed n+ 1-dimensional manifold W the invariant zF (W ) is

zF (W ) =
|BunF (W ) |

|F |
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In this way we define an n-dimensional TFT associated to the finite group F . The
only thing to check is that the composition law holds true, i.e. if W = W1∪MW2 is
obtained from gluing two bordisms W1 and W2 along the outgoing end ∂+W1

∼= M
and the incoming end ∂−W2

∼= M of W2. then we have the equality

zF (W ) = zF (W2) ◦ zF (W1) .

So for a function f : BunF (∂−W1)→ Z, we can define a function BunF (∂+W2)→
Z in two ways. First we have

zF (W ) (f) (ξ) =
1

|F |
∑
i∗+E
∼=ξ

f
(
i∗−E

)
.

and secondly we have

zF (W2) ◦ zF (W1) (f) (ξ) =
1

|F |
∑

i∗2,+C
∼=ξ

zF (W1) (f)
(
i∗2,−C

)
this then becomes

1

|F |
∑

i∗2,+C
∼=ξ

1

|F |
∑

i∗1,+D
∼=i∗2,−C

f
(
i∗1,−D

)
.
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