## Chapter 5: Function Notation

## Function Notation

Definition: The dependent variable of a function $f$ can be represented by the expression formed by writing the independent variable name within the parentheses of $f()$

$$
\text { dependent variable }=f \text { (independent variable) }
$$

We call this representation function notation.
Example: We may consider the linear equation $y=2 x+1$ as a function whose independent variable is $x$ and whose dependent variable is $y$. We may use the name ' $f$ ' to refer to this function, in which case we would substitute ' $f(x)$ ' for the $y$ and use the notation:

$$
f(x)=2 x+1
$$

Here we view $x$ and the input and $f(x)$ as the output of the function. Thus to evaluate the function $f$ at $x=2$ we use the notation $f(2)$. This represents the value of the dependent variable $y$, when the independent variable $x$ is equal to 2 . We calculate this by replacing $x$ with the number 2 and simplifying as follows:

$$
f(2)=2(2)+1=4+1=5
$$

This is called evaluating the function at $x=2$.

- Evaluate the function $f(x)=2 x+1$ at $x=-2$.
- Evaluate the function $f(x)=2 x+1$ at $x=0$.
- Evaluate the function $f(x)=2 x+1$ at $x=-\frac{1}{2}$.
- Evaluate the function $f(x)=2 x+1$ at $x=100$.

| $x$ | $g(x)$ |
| :---: | :---: |
| 3 | 12 |
| 4 | 9 |
| 5 | 8 |
| 6 | 9 |
| 7 | 12 |

Table 1: Some values of $g(x)$.

For a function $g(x)$, the above table gives the output values for the given input values of $x$.
Example: We see from the table that when $x=3$ the output $g(3)=12$.

- What is $g(6)$ ?
- What is $g(4)$ ?
- When $g(x)=8$, what is $x$ ?
- When $g(x)=12$ what is $x$ ?
- There are two values of $x$ that make $g(x)=9: x=4$, and $x=6$. Does this mean that $g(x)$ is not a function? Why or Why not?


The graph of $y=h(x)$ is given above. We see that the point $(-2,-4)$ is on the graph of $h$. This means that when the input $x=-2$, the output $h(x)=-4$.

- What is $h(0)$ ?
- What is $h(2)$ ?
- When $h(x)=-4$, what is $x$ ?
- What is the slope, and $y$-intercept of this line?
- Write down an equation of this line in function notation.

