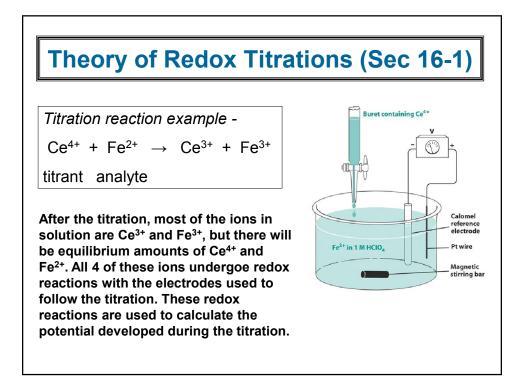
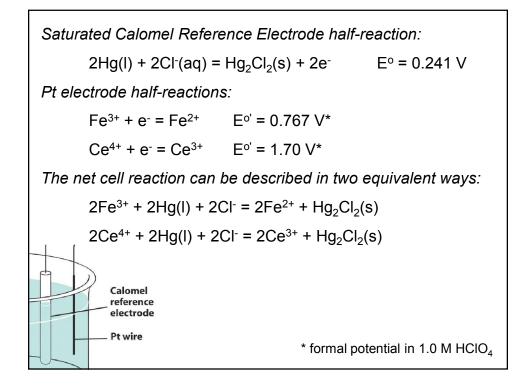

Ch 16: Redox Titrations

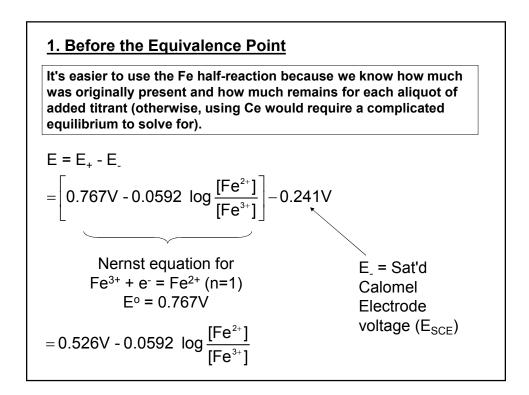
Redox titrations are essential in measuring the chemical composition of a superconductor (YBa₂Cu₃O₇ - 2/3 Cu²⁺ and 1/3 the unusual Cu³⁺)

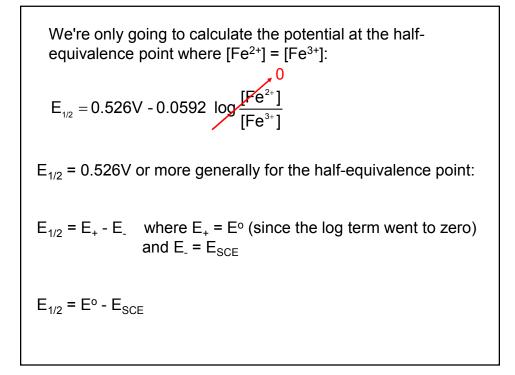
KMnO₄ Standardization Using Na₂C₂O₄

It takes 38.29 mL of a permanganate solution to titrate 0.2587 g of preimary standard NaC_2O_4 (M = 133.999). What is the molarity of the permanganate?


 $5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$


Determination of %Fe in an Ore

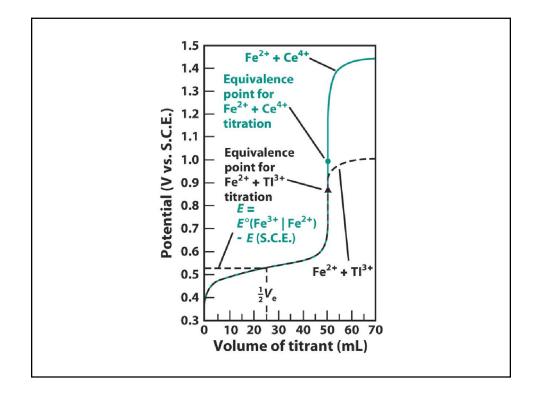

A 0.4857 g iron ore sample was dissolved in concentrated acid and reduced to Fe²⁺ using SnCl₂. 41.21 mL of 0.01963 M MnO4- was required to titrate the sample. Calculate the %Fe in the ore.

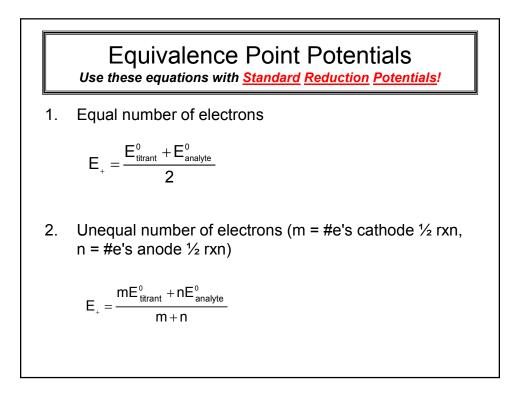

 $MnO_{4^{-}} + 8H^{+} + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$

Formal Potentials					
Redox System	Standard Potential	Formal Potential	Solution		
Ce ⁴⁺ + e ⁻ = Ce ³⁺		1.23 1.44 1.61 1.7	$\begin{array}{c} 1 \text{ M HCI} \\ 1 \text{ M H}_2 \text{SO}_4 \\ 1 \text{ M HNO}_3 \\ 1 \text{ M HCIO}_4 \end{array}$		
$Fe^{3+} + e^{-} = Fe^{2+}$	+0.771	0.68 0.700 0.767	1 M H ₂ SO ₄ 1 M HCI 1 M HCIO ₄		
Cr ₂ O ₇ ² + 14H ⁺ + 6e ⁻ = 2Cr ³⁺ + 7H ₂ O	+1.33	1.00 1.05 1.08 1.08 1.15 1.03	$\begin{array}{c} 1 \text{ M HCl} \\ 2 \text{ M HCl} \\ 3 \text{ M HCl} \\ 0.5 \text{ M H}_2\text{SO}_4 \\ 4 \text{ M H}_2\text{SO}_4 \\ 1 \text{ M HClO}_4 \end{array}$		
$H_3AsO_4 + 2H^+ + 2e^- = H_3AsO_3 + H_2O$	+0.559	0.557 0.557	1 M HCI 1 M HCIO₄		
$Cr^{3+} + e^{-} = Cr^{2+}$	-0.42	-0.38	1 M HCIO ₄		
Sn ⁴⁺ + 2e ⁻ = Sn ²⁺	+0.15	0.14	1 M HCI		

2. At the Equivalence Point

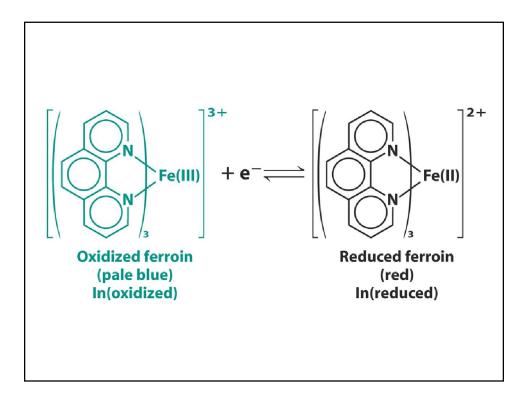
 $\begin{array}{l} Ce^{3+} + Fe^{3+} = Ce^{4+} + Fe^{2+} \mbox{ (reverse of the titration reaction)} \\ \mbox{titrant analyte} \\ \mbox{from the reaction stoichiometry, at the eq. pt. -} \\ & [Ce^{3+}] = [Fe^{3+}] \\ & [Ce^{4+}] = [Fe^{2+}] \\ \mbox{the two } \frac{1}{2} \mbox{ reactions are at equilibrium with the Pt electrode -} \\ & Fe^{3+} + e^- = Fe^{2+} \\ & Ce^{4+} + e^- = Ce^{3+} \\ \mbox{so the Nernst equations are -} \\ & E_+ = E_{Fe}^0 - 0.0592 \ \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \\ \end{array}$


$$\begin{split} & E_{+} = E_{Fe}^{0} - 0.0592 \, \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \\ & E_{+} = E_{Ce}^{0} - 0.0592 \, \log \frac{[Ce^{3+}]}{[Ce^{4+}]} \end{split} \quad \text{adding the two equations together gives -} \\ & 2E_{+} = E_{Fe}^{0} + E_{Ce}^{0} - 0.0592 \, \log \frac{[Fe^{2+}]}{[Fe^{3+}]} - 0.0592 \, \log \frac{[Ce^{3+}]}{[Ce^{4+}]} \\ & 2E_{+} = E_{Fe}^{0} + E_{Ce}^{0} - 0.0592 \, \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \frac{[Ce^{3+}]}{[Ce^{4+}]} \\ & 2E_{+} = E_{Fe}^{0} + E_{Ce}^{0} - 0.0592 \, \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \frac{[Ce^{3+}]}{[Ce^{4+}]} \\ & \text{and since } [Ce^{3+}] = [Fe^{3+}] \, \text{and } [Ce^{4+}] = [Fe^{2+}] \\ & 2E_{+} = E_{Fe}^{0} + E_{Ce}^{0} - 0.0592 \, \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \frac{[Fe^{3+}]}{[Ce^{4+}]} \\ & \text{and since } [Ce^{3+}] = [Fe^{3+}] \, \text{and } [Ce^{4+}] = [Fe^{2+}] \\ & 2E_{+} = E_{Fe}^{0} + E_{Ce}^{0} - 0.0592 \, \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \frac{[Fe^{3+}]}{[Fe^{2+}]} \\ & \frac{Fe^{3+}}{[Fe^{3+}]} \frac{Fe^{3+}}{[Fe^{3+}]} \frac{Fe^{3+}}{[Fe^{2+}]} \\ & \frac{Fe^{3+}}{[Fe^{3+}]} \frac{Fe^{3+}}{[Fe^{2+}]} \frac{Fe^{3+}}{[Fe^{2+}]} \\ & \frac{Fe^{3+}}{[Fe^{3+}]} \frac{Fe^{3+}}{[Fe^{2+}]} \frac{Fe^{3+}}{[Fe^{2+}]} \\ & \frac{Fe^{3+}}{[Fe^{3+}]} \frac{Fe^{3+}}{[Fe^{2+}]} \frac{Fe^{3+}}{[Fe^{2+}]} \\ & \frac{Fe^{3+}}{[Fe^{3+}]} \frac{Fe^{3+}}{[Fe^{3+}]} \frac{Fe^{3+}}{[Fe^{3+}]} \\ & \frac{Fe^{3+}}{[Fe^{3+}]} \\ &$$


$$2E_{+} = E_{Fe}^{\circ} + E_{Ce}^{\circ} - 0.0592 \log \frac{[Fe^{2r}]}{[Fe^{2r}]} \frac{[Fe^{2r}]}{[Fe^{2r}]}$$

$$2E_{+} = E_{Fe}^{\circ} + E_{Ce}^{\circ}$$

$$E_{+} = \frac{E_{Fe}^{\circ} + E_{Ce}^{\circ}}{2} = \frac{0.767 + 1.70}{2} = \frac{2.467}{2} = 1.23V$$


$$E_{+} = \frac{E_{titrant}^{\circ} + E_{analyte}^{\circ}}{2}$$
More generally, this is the cathode potential at the eq. pt. for any redox reaction where the number of electrons in each half reaction is equal.
$$E_{e,p.} = E_{+} - E_{-} = E_{+} - E_{SCE} = 1.23 - 0.241 = 0.99V$$

Examples1. Equal number of electrons $Fe^{2+} + Ce^{4+} = Fe^{3+} + Ce^{3+}$ in 1 M HClO4
titrant2. Unequal number of electrons $Sn^{4+} + 2Cr^{2+} = Sn^{2+} + 2Cr^{3+}$ in 1 M HCl
titrant

KMnO ₄ is its own indicator, and electrodes can be used also, in which case the eq. pt. is obtained by calculating the 2 nd derivative. Otherwise, ndicator is chosen that changes color at the eq. pt. potential. TABLE 16-1 Redox indicators									
							Color		
						Indicator	Reduced	Oxidized	E°
Phenosafranine	Colorless	Red	0.28						
Indigo tetrasulfonate	Colorless	Blue	0.36						
Methylene blue	Colorless	Blue	0.53						
Diphenylamine	Colorless	Violet	0.75						
4'-Ethoxy-2,4-diaminoazobenzene	Red	Yellow	0.76						
Diphenylamine sulfonic acid	Colorless	Red-violet	0.85						
Diphenylbenzidine sulfonic acid	Colorless	Violet	0.87						
Tris(2,2'-bipyridine)iron	Red	Pale blue	1.120						
Tris(1,10-phenanthroline)iron (ferroin)	Red	Pale blue	1.147						
Tris(5-nitro-1,10-phenanthroline)iron	Red-violet	Pale blue	1.25						
Tris(2,2'-bipyridine)ruthenium	Yellow	Pale blue	1.29						

